Abstract
This research prepared novel glasses of (20 + x)BaO + (19 + y)PbO2 + (59-x-y)B2O3 + 2Er2O3, since x and y = 0, 2, 4, 6 mol% via melt-quenching and the gamma-ray shielding capability was determined by experimental and theoretical techniques. The experimental and Phy-X LAC values are close, thus suggesting that investigation’s setup was accurate. As a result of the contents of BaO and PbO2 in sample BPBE-4 (x and y = 6 mol%) which has the highest amount as well as the highest density, the sample’s linear attenuation coefficient (LAC) value is consistently the highest throughout the energy level. This indicates a strong attenuating power. Whereas, sample BPBE-1 (x and y = 0 mol%) shows the lowest LACs both theoretical and experimental values owing to the lowest concentrations of BaO and PbO2 mole percentage in its structure. The three radiation shielding layers, half value layer (HVL), tenth value layer (TVL) and mean free path (MFP) at 0.662 MeV for the sample BPBE-1 are 1.757, 5.836, and 2.535 cm respectively. For sample BPBE-4, it shows the lowest values for radiation shielding layers (1.519, 5.045, and 2.191 cm for HVL, TVL, and MFP) making it the best shielding material.
Acknowledgements
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Choi, Y. S.; Lee, S. M. Fundamental Properties and Radioactivity Shielding Performance of Concrete Recycled Cathode Ray Tube Waste Glasses and Electric Arc Furnace Slag as Aggregates. Prog. Nucl. Energy. 2021, 133, 103649. https://doi.org/10.1016/j.pnucene.2021.103649.Search in Google Scholar
2. Aygün, B. High Alloyed New Stainless Steel Shielding Material for Gamma and Fast Neutron Radiation. Nucl. Eng. Technol. 2020, 52, 647–653. https://doi.org/10.1016/j.net.2019.08.017.Search in Google Scholar
3. Kim, S.; Ahn, Y.; Lee, D. Tungsten Nanoparticle Anchoring on Boron Nitride Nanosheet-Based Polymer Nanocomposites for Complex Radiation Shielding. Compos. Sci. Technol. 2022, 221, 109353. https://doi.org/10.1016/j.compscitech.2022.109353.Search in Google Scholar
4. Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K. Preparation and Characterisation of Isophthalic-Bi2O3 Polymer Composite Gamma Radiation Shields. Radiat. Phys. Chem. 2017, 130, 351–358. https://doi.org/10.1016/j.radphyschem.2016.09.022.Search in Google Scholar
5. Al-Dhuhaibat, M. J. R.; Salman, M.; Jubier, N. J.; Salim, A. A. Improved Gamma Radiation Shielding Traits of Epoxy Composites: Evaluation of Mass Attenuation Coefficient, Effective Atomic and Electron Number. Radiat. Phys. Chem. 2021, 179, 109183. https://doi.org/10.1016/j.radphyschem.2020.109183.Search in Google Scholar
6. Libeesh, N. K.; Naseer, K. A.; Khandaker, M. U.; Bradley, D. A.; Al-Mugren, K. S.; Al-Masoudi, A. H.; Al-Mohammed, H. I.; Khandaker, M. Applicability of the Multispectral Remote Sensing on Determining the Natural Rock Complexes Distribution and Their Evaluability on the Radiation Protection Applications. Radiat. Phys. Chem. 2022, 193, 110004. https://doi.org/10.1016/j.radphyschem.2022.110004.Search in Google Scholar
7. Sayyed, M. I.; Kaky, K. M.; Şakar, E.; Akbaba, U.; Taki, M. M.; Agar, O. Gamma Radiation Shielding Investigations for Selected Germanate Glasses. J. Non-Cryst. Solids 2019, 512, 33–40. https://doi.org/10.1016/j.jnoncrysol.2019.02.014.Search in Google Scholar
8. Tekin, H. O.; Sayyed, M. I.; Altunsoy, E. E.; Manici, T. Shielding Properties and Effects of WO3 and PbO on Mass Attenuation Coefficients by Using MCNPX Code. Dig. J. Nanomater. Biostruct. 2017, 12, 861–867.Search in Google Scholar
9. Aygün, B. Neutron and Gamma Radiation Shielding Ni Based New Type Super Alloys Development and Production by Monte Carlo Simulation Technique. Radiat. Phys. Chem. 2021, 188, 109630. https://doi.org/10.1016/j.radphyschem.2021.109630.Search in Google Scholar
10. Aktas, B.; Acikgoz, A.; Yilmaz, D.; Yalcin, S.; Dogru, K.; Yorulmaz, N. The Role of TeO2 Insertion on the Radiation Shielding, Structural and Physical Properties of Borosilicate Glasses. J. Nucl. Mater. 2022, 563, 153619. https://doi.org/10.1016/j.jnucmat.2022.153619.Search in Google Scholar
11. Fidan, M.; Acikgoz, A.; Demircan, G.; Yilmaz, D.; Aktas, B. Optical, Structural, Physical, and Nuclear Shielding Properties, and Albedo Parameters of TeO2–BaO–B2o3–PbO–V2o5 Glasses. J. Phys. Chem. Solids 2022, 163, 110543. https://doi.org/10.1016/j.jpcs.2021.110543.Search in Google Scholar
12. Kozlovskiy, A. L.; Zdorovets, M. V. Effect of Doping of Ce4+/3+ on Optical, Strength and Shielding Properties of (0.5-x)TeO2–0.25MoO–0.25Bi2O3–xCeO2 Glasses. Mater. Chem. Phys. 2021, 263, 124444. https://doi.org/10.1016/j.matchemphys.2021.124444.Search in Google Scholar
13. Kaewjaeng, S.; Chanthima, N.; Thongdang, J.; Reungsri, S.; Kothan, S.; Kaewkhao, J. Synthesis and Radiation Properties of Li2O–BaO–Bi2O3–P2o5 Glasses. Mater. Today Proc. 2021, 43, 2544–2553; https://doi.org/10.1016/j.matpr.2020.04.615.Search in Google Scholar
14. Naseer, K. A.; Marimuthu, K.; Mahmoud, K. A.; Sayyed, M. I. Impact of Bi2O3 Modifier Concentration on Barium–Zincborate Glasses: Physical, Structural, Elastic, and Radiation-Shielding Properties. Eur. Phys. J. Plus 2021, 136, 116. https://doi.org/10.1140/epjp/s13360-020-01056-6.Search in Google Scholar PubMed PubMed Central
15. Hamad, M. K. Evaluation of Photon Shielding Properties for New Refractory Tantalum-Rich Sulfides Ta9(XS3)2 Alloys: A Study with the MCNP-5. Ann. Nucl. Energy 2023, 184, 109687. https://doi.org/10.1016/j.anucene.2023.109687.Search in Google Scholar
16. Hamad, M. K. Effects of Bismuth Substitution on the Structural and Ionizing Radiation Shielding Properties of the Novel BaSn1-xBixO3 Perovskites: An Experimental Study. Mater. Chem. Phys. 2023, 308, 128254. https://doi.org/10.1016/j.matchemphys.2023.128254.Search in Google Scholar
17. Tyagi, G.; Singhal, A.; Routroy, S.; Bhunia, D.; Lahoti, M. A Review on Sustainable Utilization of Industrial Wastes in Radiation Shielding Concrete. Mater. Today Proc. 2020, 32, 746–751; https://doi.org/10.1016/j.matpr.2020.03.474.Search in Google Scholar
18. Sayyed, M. I.; Alshamari, A.; Mhareb, M. H. A. Improving Optical, Structural, Mechanical and Radiation Shielding Properties for B2O3–Er2O3 Glasses: BaO and PbO2 Effects. Radiat. Phys. Chem. 2025, 230, 112565; https://doi.org/10.1016/j.radphyschem.2025.112565.Search in Google Scholar
19. Rajendran, R.; Balakumar, C.; Ahammed, H. A. M.; Jayakumar, S.; Vaideki, K.; Rajesh, E. M. Use of Zinc Oxide Nano Particles for Production of Antimicrobial Textiles. Int. J. Eng. Sci. 2010, 2, 202–208; https://doi.org/10.4314/ijest.v2i1.59113.Search in Google Scholar
20. Al-Hadeethi, Y.; Sayyed, M. I.; Barasheed, A. Z.; Elsaf, M. A. M.; Elsafi, M. Preparation and Radiation Attenuation Properties of Ceramic Ball Clay Enhanced with Micro and Nano ZnO Particles. J. Mater. Res. Technol. 2022, 17, 223–233; https://doi.org/10.1016/j.jmrt.2021.12.109.Search in Google Scholar
21. Hanfi, M. Y.; Sayyed, M. I.; Lacomme, E.; Akkurt, I.; Mahmoud, K. A. The Influence of MgO on the Radiation Protection and Mechanical Properties of Tellurite Glasses. Nucl. Eng. Technol. 2021, 53, 2000–2010; https://doi.org/10.1016/j.net.2020.12.012.Search in Google Scholar
22. Rammah, Y. S.; Abouhaswa, A. S.; Sayyed, M. I.; Tekin, H. O.; El-Mallawany, R. Structural, UV and Shielding Properties of ZBPC Glasses. J. Non-Cryst. Solids 2019, 509, 99–105; https://doi.org/10.1016/j.jnoncrysol.2018.12.013.Search in Google Scholar
23. Luo, H.; Hu, X.; Liu, W.; Zhang, Y.; Lu, A.; Hao, X. Compositional Dependence of Properties of Gd2O3–SiO2–B2o3 Glasses with High Gd2O3 Concentration. J. Non-Cryst. Solids 2014, 389, 86–92; https://doi.org/10.1016/j.jnoncrysol.2014.02.017.Search in Google Scholar
24. Sun, X. Y.; Jiang, D. G.; Wang, W. F.; Cao, C. Y.; Li, Y. N.; Zhen, G. T.; Wang, H.; Yang, X. X.; Chen, H. H.; Zhang, Z. J.; Zhao, J. T. Luminescence Properties of B2O3–GeO2–Gd2O3 Scintillating Glass Doped with Rare-Earth and Transition-Metal Ions. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 716, 9095; https://doi.org/10.1016/j.nima.2013.03.036.Search in Google Scholar
25. Kathem, H. O.; Resen, M. J.; Jubier, N. J. Characterization of Radiation Attenuation Properties of 0.662 MeV Gamma Ray Energy for Epoxy Fe3O4 Composite Shields. Indian J. Nat. Sci. 2018, 9, 14609–14615.Search in Google Scholar
26. Elsafi, M.; Almousa, N.; Almasoud, F. I.; Sayyed, M. I.; Alyahyawi, A. R.; Sayyed, M. I. A Novel Epoxy Resin-Based Composite with Zirconium and Boron Oxides: An Investigation of Photon Attenuation. Crystals 2022, 12 (10), 1370; https://doi.org/10.3390/cryst12101370.Search in Google Scholar
27. Kaban, Ö.; Cengiz, G. B.; Çağlar, İ.; Bilir, G. The Effect of Rare Earths (Nd3+, Er3+, Yb3+) Additives on the Radiation Shielding Properties of the Tungsten Oxide Modified Tellurite Glasses. Radiochim. Acta 2024, 112 (12), 1015–1024; https://doi.org/10.1515/ract-2024-0297.Search in Google Scholar
28. Rautela, M. S.; Singh, V.; Singh, N. Investigating the Effect of Gamma Irradiation on Structural and Optical Properties of (55-x) TeO2-20ZnO-25b2o3-xEr2O3 Radiation Shielding Glass: Influence of Er3+ Ions. Radiat. Phys. Chem. 2024, 224, 112071; https://doi.org/10.1016/j.radphyschem.2024.112071.Search in Google Scholar
29. Iliyasu, U.; Sanusi, M. S. M.; Ahmad, N. E. Investigation of the Optical and Radiation Shielding Parameters of Erbium-Doped Zinc Sodium Tungsten Borate Glass Using MCNP5 Simulations. Mater. Res. Express 2024, 11 (11), 115201; https://doi.org/10.1088/2053-1591/ad8b14.Search in Google Scholar
30. El Baiomy, M.; Ramadan, R. M.; Moustafa, Y. M.; El Damrawi, G. Structural, Optical, and Radiation Shielding Parameters of Zinc Silicate Glasses Modified with Erbium Oxide. Opt. Mater. 2024, 152, 115529; https://doi.org/10.1016/j.optmat.2024.115529.Search in Google Scholar
31. Sayyed, M. I.; Yasmin, S.; Almousa, N.; Elsafi, M. Shielding Properties of Epoxy Matrix Composites Reinforced with MgO Micro- and Nanoparticles. Materials 2022, 15 (18), 6201; https://doi.org/10.3390/ma15186201.Search in Google Scholar PubMed PubMed Central
32. Al-Ghamdi, H.; Elsafi, M.; Sayyed, M. I.; Almuqrin, A. H.; Tamayo, P. Performance of Newly Developed Concretes Incorporating WO3 and Barite as Radiation Shielding Material. J. Mater. Res. Technol. 2022, 19, 4103–4114; https://doi.org/10.1016/j.jmrt.2022.06.145.Search in Google Scholar
33. Aladailah, M. W.; Tashlykov, O. L.; Shirmanov, I. A.; Sayyed, M.; Marashdeh, M. W.; Al-Maaitah, A.; Elsafi, M.; Al-Maaitah, A. F. Radiation Attenuation Properties of Novel Glass System Using Experimental and Geant4 Simulation. Radiat. Phys. Chem. 2022, 199, 110404; https://doi.org/10.1016/j.radphyschem.2022.110404.Search in Google Scholar
34. Sayyed, M. I.; Yasmin, S.; Almousa, N.; Elsafi, M. The Radiation Shielding Performance of Polyester with TeO2 and B2O3. Processes 2022, 10 (9), 1725; https://doi.org/10.3390/pr10091725.Search in Google Scholar
35. Sayyed, M. I.; Almousa, N.; Elsafi, M. Preparation of Mortar with Fe2O3 Nanoparticles for Radiation Shielding Application. Coatings 2022, 12 (9), 1329; https://doi.org/10.3390/coatings12091329.Search in Google Scholar
36. Aljohani, F. S.; Elsafi, M.; Ghoneim, N. I.; Sayyed, M. I.; Mohafez, H.; Islam, M. A.; Khandaker, M. U.; El-Khatib, M. Water Treatment from MB Using Zn-Ag MWCNT Synthesized by Double Arc Discharge. Materials 2021, 14 (23), 7205; https://doi.org/10.3390/ma14237205.Search in Google Scholar PubMed PubMed Central
37. Kumar Guntu, R. EPR-TL Correlation, in Radiation Shielding Ba (10-x) Mn X La 30 Si 60 Glasses. Prog. J. Mol. Struct. 2022, 1248, 131533; https://doi.org/10.1016/j.molstruc.2021.131533.Search in Google Scholar
38. Sayyed, M. I.; Abdel-Gawad, E. H.; Hanafy, T. A.; Elsafi, M. Experimental Evaluation of Radiation Shielding Characteristics of Borate-Based-Glass System Reinforced with Titanium Oxide. Opt. Mater. 2024, 154, 115738; https://doi.org/10.1016/j.optmat.2024.115738.Search in Google Scholar
39. Zakaly, H. M. H.; Issa, S. A. M.; Tekin, H. O.; Badawi, A.; Saudi, H. A.; Henaish, A. M. A.; Rammah, Y. S. An Experimental Evaluation of CdO/PbO-B2o3 Glasses Containing Neodymium Oxide: Structure, Electrical Conductivity, and Gamma-Ray Resistance. Mater. Res. Bull. 2022, 151, 111828. https://doi.org/10.1016/j.materresbull.2022.111828.Search in Google Scholar
40. Zakaly, H. M. H.; Issa, S. A. M.; Saudi, H. A.; Alharshan, G. A.; Uosif, M. A. M.; Henaish, A. M. A. Structure, Mössbauer, Electrical, and γ-ray Attenuation-Properties of Magnesium Zinc Ferrite Synthesized Co-precipitation Method. Sci. Rep. 2022, 12. https://doi.org/10.1038/s41598-022-17311-y.Search in Google Scholar PubMed PubMed Central
41. Zakaly, H. M. H.; Issa, S. A. M.; Saudi, H. A.; Soliman, T. S. Decoding the Role of Bismuth Oxide in Advancing Structural, Thermal, and Nuclear Properties of [B2O3–Li2O–SiO2]-Nb2O5 Glass Systems. Radiat. Phys. Chem. 2024, 223, 111984. https://doi.org/10.1016/j.radphyschem.2024.111984.Search in Google Scholar
42. Al-Ghamdi, H.; Sayyed, M. I.; Kumar, A.; Yasmin, S.; Elbashir, B. O.; Almuqrin, A. H. Effect of PbO and B2O3 on the Physical, Structural, and Radiation Shielding Properties of PbO-TeO2-MgO-Na2O-B2o3 Glasses. Sustainability 2022, 14 (15), 9695. https://doi.org/10.3390/su14159695.Search in Google Scholar
43. Almuqrin, A.; Abualsayed, M. Effect of Dysprosium on the Radiation-Shielding Features of SiO2–PbO–B2o3 Glasses. Open Phys. 2023, 21 (1), 20220250. https://doi.org/10.1515/phys-2022-0250.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Separation and purification of Zr from a low-temperature LiCl–KCl–CsCl eutectic by the formation of dendritic crystal
- Particle-reinforced ion exchange resin for selective separation and recovery of cesium from highly acidic water
- Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI
- Mn(II) and Cu(II) metal complexes with bisamine based bidentate ligand. Spectroscopic investigation, biological activity and gamma ray irradiation impact
- Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation
- Erbium-borate modified glass with lead and barium: new composite materials for gamma ray shielding
- Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- Separation and purification of Zr from a low-temperature LiCl–KCl–CsCl eutectic by the formation of dendritic crystal
- Particle-reinforced ion exchange resin for selective separation and recovery of cesium from highly acidic water
- Green synthesis of MnFe2O4 nanoparticles using Elaeis guineensis Jacq. leaves and empty fruit bunches extract and its radiolabeling with 99mTc as a potential agent for dual-modality imaging SPECT/MRI
- Mn(II) and Cu(II) metal complexes with bisamine based bidentate ligand. Spectroscopic investigation, biological activity and gamma ray irradiation impact
- Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation
- Erbium-borate modified glass with lead and barium: new composite materials for gamma ray shielding
- Gamma and neutron radiation shielding properties of Al2O3–B2O3–SiO2–ZnO–BaO glasses