Home Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation
Article
Licensed
Unlicensed Requires Authentication

Synergistic influence of carbon black and montmorillonite nano clay on mechanical, electrical, and acoustic properties of nitrile butadiene rubber nanocomposites via gamma radiation

  • May M. El Zayat EMAIL logo , Nashwa. M. Yousif ORCID logo , Tarek M. El-Basheer and Rania Mounir
Published/Copyright: July 8, 2025

Abstract

Aiming at enhancing the characters of the synthetic rubber (NBR) to fulfill the required measures of many applications, this work aims to study the impact of both, carbon black at a constant concentration of 40 phr and organomontmorillonite clay (nanoclay) at varying loading levels (0, 3, 7 and 10) phr, as reinforcing fillers within the acrylonitrile-butadiene rubber (NBR) matrix. The surfactant, N-cetyl-N, N, N-trimethyl ammonium bromide (CTAB), was applied to modify the superficial properties of the clay. Modified montmorillonite possesses desirable intercalating behavior within the rubber matrix, regarded as effective reinforcing filler that can replace other fillers. TEM, FT-IR, XRD and EDX methods were used to characterize the developed organomontmorillonite. Similarly, the nanocomposites mechanical, electrical, acoustic and thermal stability properties were investigated.


Corresponding author: May M. El Zayat, Radiation Chemistry Department, Egyptian National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: May M. El Zayat: conceptualization, methodology, investigation, writing – original draft; Rania Mounir: methodology, investigation, data curation, writing – original draft; Tarek M. El-Basheer: investigation, data curation, writing – original draft; Nashwa. M. Yousif: investigation, data curation, writing – original draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: The authors declare no competing interest.

  6. Research funding: No funding.

  7. Data availability: All data generated or analyzed during this study are included in this article.

References

1. Maamoun, A. A.; El-Wakil, A. A.; Tarek, M. Enhancement of the Mechanical and Acoustical Properties of Flexible Polyurethane Foam/Waste Seashell Composites for Industrial Applications. J. Cell. Plast. 2022, 58, 4. https://doi.org/10.1177/0021955X221088392.Search in Google Scholar

2. Abdelkhalik, A.; Makhlouf, G.; El-Basheer, T. M. Reducing Fire Hazards and Enhancing the Thermal Stability, Acoustical, and UV Protection of Polyvinyl Alcohol Using Bio-Based Flame Retardant. J. Thermoplast. Compos. Mater. 2022, 37, 6. https://doi.org/10.1177/08927057231211237.Search in Google Scholar

3. El-Sabbagh, S. H.; Mahmoud, D. S.; Zawrah, M. F.; Ahmed, N. M.; El-Sabaa, M. W. Investigation on the Properties of Rubber Composites Containing Modified Clay. Pigm. Resin Technol. 2015, 44, 131–142; https://doi.org/10.1108/PRT-09-2014-0073.Search in Google Scholar

4. Kang, H.; Bae, J.; Lee, J.; Yun, Y.; Jeon, S.; Chung, N.; Jung, J.; Baek, U.; Kim, Y.; Choi, M. The Synergistic Effect of Carbon Black/Carbon Nanotube Hybrid Fillers on the Physical and Mechanical Properties of EPDM Composites after Exposure to High-Pressure Hydrogen Gas. Polymers 2024, 16, 1065. https://doi.org/10.3390/polym16081065.Search in Google Scholar PubMed PubMed Central

5. Abdul Salim, Z. A. S.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym.-Plast. Technol. Eng. 2018, 57, 523–539; https://doi.org/10.1080/03602559.2017.1329432.Search in Google Scholar

6. Choi, S. S.; Park, B. H.; Song, H. Influence of Filler Type and Content on Properties of Styrene-Butadiene Rubber (SBR) Compound Reinforced with Carbon Black or Silica. Polym. Adv. Technol. 2004, 15, 122–127; https://doi.org/10.1002/pat.421.Search in Google Scholar

7. Junkong, P.; Kueseng, P.; Wirasate, S.; Huynh, C.; Rattanasom, N. Cut Growth and Abrasion Behavior, and Morphology of Natural Rubber Filled with MWCNT and MWCNT/Carbon Black. Polym. Test. 2015, 41, 172–183. https://doi.org/10.1016/j.polymertesting.2014.11.009.Search in Google Scholar

8. Qu, L.; Huang, G.; Zhang, P.; Nie, Y.; Weng, G.; Wu, J. Synergistic Reinforcement of Nano-Clay and Carbon Black in Natural Rubber. Polym. Int. 2010, 59, 1397–1402. https://doi.org/10.1002/pi.2881.Search in Google Scholar

9. Youssef, H. A.; Ali, Z. I.; El-Nemr, K. F.; Bekhit, M. Effect of Ionizing Radiation on the Properties of Acrylonitrile Butadiene Rubber/Clay Nanocomposites. J. Elastomers Plast. 2012, 45, 407–428. https://doi.org/10.1177/0095244312457797.Search in Google Scholar

10. Bhattacharya, A. Radiation and Industrial Polymers. Prog. Polym. Sci. 2000, 25, 371–401; https://doi.org/10.1016/S0079-6700(00)00009-5.Search in Google Scholar

11. Clough, R. L. High-Energy Radiation and Polymers: A Review of Commercial Processes and Emerging Applications. Nucl. Instrum. Methods Phys. Res., Sect. B 2001, 185, 8–33. https://doi.org/10.1016/S0168-583X(01)00966-1.Search in Google Scholar

12. Tamada, M.; Maekawa, Y. Radiation Processing of Polymers and its Applications. Charg. Part 2010, 63–80; https://doi.org/10.1007/978-981-10-7350-2_8.Search in Google Scholar

13. Yan, L.; Qin, L.; Yu, H.; Li, S.; Shan, R.; Du, B. Adsorption of Acid Dyes from Aqueous Solution by CTMAB Modified Bentonite: Kinetic and Isotherm Modeling. J. Mol. Liq. 2015, 211, 1074–1081. https://doi.org/10.1016/j.molliq.2015.08.032.Search in Google Scholar

14. Shi, Z.; Li, P.; Liu, L. Interactions between CTAB and Montmorillonite by Atomic Force Microscopy and Molecular Dynamics Simulation. Colloids Surf., A 2023, 20, 130656; https://doi.org/10.1016/j.colsurfa.2022.130656.Search in Google Scholar

15. Kumaresan, S.; Rokade, D. S.; Marathe, Y. N.; Ingole, P. G.; Pawar, R. R.; Pol, H. V.; Bajaj, H. C. Synthesis and Characterization of Nylon 6 Polymer Nanocomposite Using Organically Modified Indian Bentonite. SN Appl. Sci. 2020, 2, 1412. https://doi.org/10.1007/s42452-020-2579-5.Search in Google Scholar

16. Bilgic, C.; Yazici, D. T.; Karakehya, N.; Cetinkaya, H.; Singh, A.; Chehimi, M. M. Surface and Interface Physicochemical Aspects of Intercalated Organo-Bentonite. Int. J. Adhes. Adhes. 2014, 50, 204–210. https://doi.org/10.1016/j.ijadhadh.2014.01.03.Search in Google Scholar

17. Sadek, E. M.; El-Nashar, D. E.; Ahmed, S. M. Influence of Modifying Agents of Organoclay on the Properties of Nanocomposites Based on Acrylonitrile Butadiene Rubber. Egypt. J. Pet. 2018, 27, 4; https://doi.org/10.1016/j.ejpe.2018.04.007.Search in Google Scholar

18. Raslan, H. A.; El-Saied, H. A.; Mohamed, R. M.; Yousif, N. M. Gamma Radiation Induced Fabrication of Styrene Butadiene Rubber/Magnetite Nanocomposites for Positive Temperature Coefficient Thermistors Application. Composites, Part B 2019, 176, 107326; https://doi.org/10.1016/j.compositesb.2019.107326.Search in Google Scholar

19. Attia, R. M.; Yousif, N. M.; Helal, R. H.; Ali, N. M. Fabricating Electronic Textile Using Nano MnO2/polyaniline Composites for Capacitor Device. J. Ind. Text. 2022, 51, 1161–1180; https://doi.org/10.1177/1528083719896765.Search in Google Scholar

20. Morsy, R. M.; Ismaiel, M. N.; Yehia, A. A. Conductivity Studies on Acrylonitrile Butadiene Rubber Loaded with Different Types of Carbon Blacks. Int. J. Mater. Prod. Technol. 2013, 1, 22–35; https://doi.org/10.21608/JTCPS.2010.30564.Search in Google Scholar

21. Boonbumrung, A.; Sae-Oui, P.; Sirisinha, C. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica. J. Nanomater. 2016, 2016 (1), 6391572.‏10.1155/2016/6391572Search in Google Scholar

22. El-Nemr, K. F.; Balboul, M. R.; Ali, M. A. Electrical and Mechanical Properties of Manganese Dioxide-Magnetite-Filled Acrylonitrile Butadiene Rubber Blends. J. Thermoplast. Compos. Mater. 2016, 29 (5), 704–716; https://doi.org/10.1177/0892705714533372.Search in Google Scholar

23. Gupta, A.; Choudhary, V. Electromagnetic Interference Shielding Behavior of Poly(trimethylene Terephthalate)/Multi-Walled Carbon Nanotube Composites. Compos. Sci. Technol. 2011, 71, 1563–1568; https://doi.org/10.1016/j.compscitech.2011.06.014.Search in Google Scholar

24. Etika, K. C.; Liu, L.; Hess, L. A.; Grunlan, J. C. L. A. The Influence of Synergistic Stabilization of Carbon Black and Clay on the Electrical and Mechanical Properties of Epoxy Composites. Carbon N. Y. 2009, 47, 3128–3136; https://doi.org/10.1016/j.carbon.2009.07.031.Search in Google Scholar

25. Peidayesh, H.; Špitalský, Z.; Chodák, I. Electrical Conductivity of Rubber Composites with Varying Crosslink Density under Cyclic Deformation. Polymers 2022, 14, 3640. https://doi.org/10.3390/polym14173640.Search in Google Scholar PubMed PubMed Central

26. Sahu, G.; Das, M.; Yadav, M.; Sahoo, B. P.; Tripathy, J. Dielectric Relaxation Behavior of Silver Nanoparticles and Graphene Oxide Embedded Poly(vinyl Alcohol) Nanocomposite Film: An Effect of Ionic Liquid and Temperature. Polymers 2020, 12, 1–16; https://doi.org/10.3390/polym12020374.Search in Google Scholar PubMed PubMed Central

27. Attia, R. M.; Yousif, N. M.; Balboul, M. R. Facile Synthesis of R GO/Ag/PVA Nanocomposites Polymeric Films by Electron Beam Irradiation for Optoelectronic Applications. Opt. Mater. (Amsterdam) 2022, 126, 112233; https://doi.org/10.1016/j.optmat.112233.Search in Google Scholar

28. Cui, L.; Lu, X.; Chao, D.; Liu, H.; Li, Y.; Wang, C. Graphene-based Composite Materials with High Dielectric Permittivity via an In Situ Reduction Method. Phys. Status Solidi A: Appl. Mater. 2011, 208, 459–461; https://doi.org/10.1002/pssa.201026273.Search in Google Scholar

29. Yousif, N. M.; Makram, N.; Wahab, L. A. Structural, Dielectric, and Magnetic Properties of LaCo0.2Mn0.8O3 and La2CoMnO6 Perovskite Materials. J. Sol-Gel Sci. Technol. 2021, 98, 238–251; https://doi.org/10.1007/s10971-021-05502-4.Search in Google Scholar

30. Annadurai, P.; Kumar, S.; Mukundan, T.; Joseph, R.; Sarkar, P.; Chattopadhyay, S. Effect of Nanostructures of Modified Clay – Carbon Black on Physico-Mechanical, Electrical, and Acoustic Properties of Elastomer-Based Composites. Polym. Compos. 2016, 37, 1786–1796. https://doi.org/10.1002/pc.23351.Search in Google Scholar

31. Bakhshizade, A.; Ghasemi-Ghalebahman, A.; Hajimousa, M. A. Effect of Nanoclay Filler on Fatigue Life of Natural Rubber/Styrene-Butadiene Blend. Adv. Polym. Technol. 2022, 8, 1–17. https://doi.org/10.1155/2022/5950215.Search in Google Scholar

32. Chakraborty, S.; Roy, P.; Bandyopadhyay, S.; Debnath, M.; Dasgupta, S.; Mukhopadhyay, R. Composition Analysis of Carbon Black-Filled Composition Analysis of Carbon Black-Filled Polychloroprene Rubber Compound by Thermo-Oxidative Degradation of the Compound. J. Elastomers Plast. 2011, 43; https://doi.org/10.1177/0095244311413442.Search in Google Scholar

33. Sharma, P.; Panwar, V.; Kharitonov, A. P.; Pal, K. Effect of Nanoclay on Carbon Black Reinforced Blend of Amorphous – Semicrystalline Polymers. Polym. Bull. 2017, 74, 3341–3351; https://doi.org/10.1007/s00289-016-1887-9.Search in Google Scholar

34. Fu, W.; Wang, L.; Huang, J.; Liu, C.; Peng, W.; Xiao, H.; Li, S. Mechanical Properties and Mullins Effect in Natural Rubber Reinforced by Grafted Carbon Black. Adv. Polym. Technol. 2019, 11. https://doi.org/10.1155/2019/4523696.Search in Google Scholar

35. Saleh, B. K.; Halim, S. F.; Khalil, M. H. Evaluation of Thermal and Mechanical Properties of Crumb/Natural Rubber Nanocomposites. Egypt. J. Chem. 2020, 63, 2523–2532; https://doi.org/10.21608/ejchem.2019.5522.1493.Search in Google Scholar

36. Kumar, V.; Kumar, M.; Pugazhenthi, G. Effect of Nanoclay Content on the Structural, Thermal Properties and Thermal Degradation Kinetics of PMMA/Organoclay Nanocomposites. Int. J. Nano Biomater. 2017, 5; https://doi.org/10.1504/IJNBM.2014.061809.Search in Google Scholar

Received: 2024-11-07
Accepted: 2025-06-07
Published Online: 2025-07-08
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0367/html
Scroll to top button