Home Activation cross sections for the formation of 51Cr and 52,54Mn in interactions of deuterons with iron
Article
Licensed
Unlicensed Requires Authentication

Activation cross sections for the formation of 51Cr and 52,54Mn in interactions of deuterons with iron

  • M. Mehedi Hasan , M. Shuza Uddin ORCID logo EMAIL logo , A. Kumer Chakroborty and M. Shamsuzzoha Basunia
Published/Copyright: February 6, 2024

Abstract

Excitation functions for the formation of the radionuclides 51Cr, 52Mn and 54Mn via deuteron-induced activation of natural iron were measured up to deuteron energies of 35 MeV. The available experimental databases of the reaction products 51Cr, 52Mn and 54Mn were extended and compared with the nuclear model calculations using the TALYS code. The model calculations reproduce our measured data after a careful choice of the input model parameters. Some information obtained on competition between the emission of multinucleons and a bound α-particle.


Corresponding author: M. Shuza Uddin, Tandem Accelerator Facilities, INST, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh, E-mail:

Funding source: Lawrence Berkeley National Laboratory

Award Identifier / Grant number: DE-AC02-05CH11231

Acknowledgments

M. Shuza Uddin would like to acknowledge the authorities of Bangladesh Atomic Energy Commission and Ministry of Science and Technology, Dhaka, Bangladesh, for granting leave of absence to conduct these experiments abroad. We wish to thank the operation staff of the 88-Inch cyclotron, LBNL, for providing the deuteron beam. Uddin is thankful to Prof. Lee A. Bernstein, LBNL, for discussions on the deuteron induced reaction kinematics during his visit at LBNL. We are grateful to Prof. Syed M. Qaim, Forschungszentrum Jülich, Germany, for his continued and kind encouragement for research including the suggestions and support in preparing this manuscript.

  1. Research ethics: The manuscript/the study has been approved by the host/collaborators where the study was performed, and that the study subjects, or the guardians, gave informed consent for participation in the study.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Zaman, M. R., Qaim, S. M. Excitation Functions of (D,n) and (D,a) Reactions on High Enriched 54Fe: Relevance to the Production of High Purity 55Co at a Small Cyclotron. Radiochim. Acta 1996, 75, 59; https://doi.org/10.1524/ract.1996.75.2.59.Search in Google Scholar

2. Zaman, M. R., Spellerberg, S., Qaim, S. M. Production of 55Co via the 54Fe(d,n)-Process and Excitation Functions of 54Fe(d,t)53Fe and 54Fe(d,α)52mMn Reactions from Threshold up to 13.8 MeV. Radiochim. Acta 2003, 91, 105; https://doi.org/10.1524/ract.91.2.105.19991.Search in Google Scholar

3. Avrigeanu, M., Avrigeanu, V., Bém, P., Fischer, U., Honusek, M., Katovsky, K., Mănăilescu, C., Mrázek, J., Šimečková, E., Závorka, L. Low Energy Deuteron-Induced Reactions on Fe Isotopes. Phys. Rev. C 2014, 89, 044613; https://doi.org/10.1103/physrevc.89.044613.Search in Google Scholar

4. Baron, N., Cohen, B. L. Activation Cross-Section Survey of Deuteron-Induced Reactions. Phys. Rev. 1963, 129, 2636; https://doi.org/10.1103/physrev.129.2636.Search in Google Scholar

5. Vlasov, N. A., Kalinin, S. P., Ogloblin, A. A., Pankratov, V. M., Rudakov, V. P., Serikov, I. N., Sidorov, V. A. Excitation Functions for the Reactions Mg24(d,α)Na22, Fe54(d,α)52Mn, Fe54(d,n)55Co and Zn66(d,2n)66Ga. Atom. Ener. 1957, 2, 169–171.10.1007/BF01832090Search in Google Scholar

6. Sudár, S., Qaim, S. M. Excitation Functions of Some Proton and Deuteron Induced Reactions on Iron and Alpha-Particle Induced Reactions on Manganese in the Energy Region up to 25 MeV. Phys. Rev. C 1994, 50, 408.10.1103/PhysRevC.50.2408Search in Google Scholar PubMed

7. Khandaker, M. U., Haba, H., Kanaya, J., Otuka, N. Activation Cross-Sections of Deuteron-Induced Nuclear Reactions on Natural Iron up to 24 MeV. Nucl. Instrm. Meth. Phys. Res. B 2013, 316, 33–41; https://doi.org/10.1016/j.nimb.2013.08.032.Search in Google Scholar

8. Dmitriev, P. P., Konstantinov, I. O., Krasnov, N. N. Methods for Producing the Mn-52 Isotope. Atom. Ener. 1969, 26, 539–541; https://doi.org/10.1007/bf01174115.Search in Google Scholar

9. Király, B., Takács, S., Ditrói, F., Tárkányi, F., Hermanne, A. Evaluated Activation Cross Sections of Longer-Lived Radionuclides Produced by Deuteron Induced Reactions on Natural Iron up to 10 MeV. Nucl. Instrum. Meth. Phys. Res. B 2009, 267, 15–22; https://doi.org/10.1016/j.nimb.2008.11.005.Search in Google Scholar

10. Wenrong, Z., Hanlin, L., Weixiang, Y., Jiantao, C. Excitation Functions for Reactions Induced by Deuteron in Iron. Chinese J. Nucl. Phys. 1995, 17, 163–166.Search in Google Scholar

11. Jung, P. Cross Sections for the Production of Helium and Long-Living Radioactive Isotopes by Protons and Deuterons. Conf. on Nucl. Data for Sci. and Tech. Juelich 1991/1992, 352–354.10.1007/978-3-642-58113-7_102Search in Google Scholar

12. Zhenlan, T., Fuying, Z., Huiyuan, Q., Gongoing, W. Excitation Function of Deuteron-Induced Reactions on Natural Iron. Atom. Ener. Sci. Tech. 1984, 18, 506.Search in Google Scholar

13. Clark, J. W., Fulmer, C. B., Williams, I. R. Excitation Function for Radioactive Nuclides Produced by Deuteron-Induced Reactions in Iron. Phys. Rev. 1969, 179, 1104; https://doi.org/10.1103/physrev.179.1104.Search in Google Scholar

14. Ochiai, K., Nakao, M., Kubota, N., Sato, S., Yamauchi, M., Ishioka, N. H., Nishitani, T., Konno, C. Deuteron Induced Activation Cross Section Measurement for IFMIF. Int. Conf. Nucl. Data for Sci. and Tech. Nice 2007, 2, 1011–1014.10.1051/ndata:07663Search in Google Scholar

15. Hermanne, A., Sonck, M., Takács, S., Tárkányi, F. Experimental Study of Excitation Functions for Some Reactions Induced by Deuterons (10-50 Mev) on Natural Fe and Ti. Nucl. Instrum. Meth. Phys. Res.B 2000, 161–163, 178–185; https://doi.org/10.1016/s0168-583x(99)00987-8.Search in Google Scholar

16. Uddin, M. S., Basunia, M. S., Qaim, S. M. Excitation Functions of Some Deuteron-Induced Nuclear Reactions on Al. Radichim. Acta 2021, 109, 727–733; https://doi.org/10.1515/ract-2021-1065.Search in Google Scholar

17. Piel, H., Qaim, S. M., Stöcklin, G. Excitation Functions of (P, Xn) Reactions on natNi and Highly Enriched 62Ni: Possibility of Production of Medically Important Radioisotope 62Cu at a Small Cyclotron. Radiochim. Acta 1992, 57, 1; https://doi.org/10.1524/ract.1992.57.1.1.Search in Google Scholar

18. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental Determination of Proton Induced Reaction Cross Sections on natNi Near Threshold Energy. Radiochim. Acta 2016, 104, 305; https://doi.org/10.1515/ract-2015-2527.Search in Google Scholar

19. Williamson, C. F., Boujot, J. P., Picard, J. Tables of Range and Stopping Power of Chemical Elements for Charged Particles of Energies from 0.5 to 500 MeV. Report CEA-R 3042, 1966.Search in Google Scholar

20. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., EngleJ, W., Kellett, M. A., Kibédi, T., Kim, G., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L., Nortier, F. M., Suryanarayana, S. V., Takács, S., Tárkányi, F., Verpelli, M. Reference Cross Sections for Charged-Particle Monitor Reactions. Nucl. Data Sheets 2018, 148, 338–382; https://doi.org/10.1016/j.nds.2018.02.009.Search in Google Scholar

21. Fitzgerald, J. J. F. Computing Services, 17 Chapel Road, Stanford in the Vale, Oxfordshire, SN7 8LE; Copyright © Jim Fitzgerald, 1991–2016. Last updated 8th October 2016.Search in Google Scholar

22. Dong, Y., Junde, H. Nuclear data sheets for A = 54. Nucl. Data Sheets 2014, 121, 1–142; https://doi.org/10.1016/j.nds.2014.09.001.Search in Google Scholar

23. Dong, Y., Junde, H. Nuclear data sheets for A = 52. Nucl. Data Sheets 2015, 128, 185–314; https://doi.org/10.1016/j.nds.2015.08.003.Search in Google Scholar

24. Jimin, W., Xiaolong, H. Nuclear data sheets for A = 51. Nucl. Data Sheets 2017, 144, 1–296; https://doi.org/10.1016/j.nds.2017.08.002.Search in Google Scholar

25. Koning, A., Hilaire, S., Goriely, S. TALYS: Modeling of Nuclear Reactions. Eur. Phys. J. A 2023, 59, 131; https://doi.org/10.1140/epja/s10050-023-01034-3.Search in Google Scholar

26. Koning, A. J., Hilaire, S., Duijvestijn, M. C.. TALYS-1.0. Proc. International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France; Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R.; Leray, S., Eds. EDP Sciences, 2008; pp. 211–214.10.1051/ndata:07767Search in Google Scholar

27. Koning, A. J., Rochman, D., van der Marck, S. C., Kopecky, J., Sublet, J.Ch., Pomp, S., Sjostrand, H., Forrest, R., Bauge, E., Henriksson, H., Cabellos, O., GorielyLeppanen, S. I., Leeb, H., Plompen, A., Mills, R. TENDL-2019: TALYS-Based Evaluated Nuclear Data Library, 2019.Search in Google Scholar

28. Capote, R., Herman, M., Oblozinsky, P., Young, P., Goriely, S., Belgya, T., Ignatyuk, A., Koning, A. J., Hilaire, S., Plujko, V., Avrigeanu, M., Chadwick, O. B. M., Fukahori, T., Kailas, S., Kopecky, J., Maslov, V., Reffo, G., Sin, M., Soukhovitskii, E., Talou, P., Yinlu, H., Zhigang, G. RIPL 3 reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; https://doi.org/10.1016/j.nds.2009.10.004.Search in Google Scholar

29. Sudár, S., Qaim, S. M. Mass Number and Excitation Energy Dependence of the Θeff/Θrig Parameter of the Spin Cut-Off Factor in the Formation of an Isomeric Pair. Nucl. Phys. A 2018, 979, 113–142; https://doi.org/10.1016/j.nuclphysa.2018.09.039.Search in Google Scholar

30. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of Excitation Functions of 100Mo(p,d+pn)99Mo and 100Mo (p,2n)99mTc Reactions: estimation of Long-Lived Tc-Impurity and its Implication on the Specific Activity of Cyclotron-Produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101–113; https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar PubMed

31. Elbinawi, A., Al-abyad, M., Abd-Elmageed, K. E., Hassan, K. F., Ditroi, F. Proton Induced Nuclear Reactions on Natural Antimony up to 17 MeV. Radiochim. Acta 2016, 104, 221; https://doi.org/10.1515/ract-2015-2483.Search in Google Scholar

32. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morrell, J. T., Zaneb, H., Rios, J. A., Spahn, I., Bernstein, L. A., Qaim, S. M., Neumaier, B. Accurate Determination of Production Data of the Non-standard Positron Emitter 86Y via the 86Sr(p,n)-Reaction. Radiochim. Acta 2020, 108, 747–756; https://doi.org/10.1515/ract-2020-0021.Search in Google Scholar

Received: 2023-11-21
Accepted: 2023-12-30
Published Online: 2024-02-06
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0259/html
Scroll to top button