Abstract
This work studies the adsorption of zirconium ions by mesoporous titanium dioxide with surface arsenate groups. Experimental maximal adsorption values of zirconium ions were found to be 109.6 mg/g in neutral medium. This process depends on the interaction time, the equilibrium concentration of zirconium ions, and the acidity of the solution. Adsorption kinetics fit well into the kinetic model based on the pseudo-second-order equation (R 2 = 0.9984). Equilibrium adsorption of zirconium ions is well described by Langmuir’s adsorption theory (R 2 = 0.9856 and χ 2 = 1.307). Although zirconium ions are less actively adsorbed from a neutral medium than strontium or yttrium ions, in the 2% nitric acid only zirconium is adsorbed out of the mixture of zirconium, strontium, and yttrium. The results obtained by inductively coupled plasma mass spectrometry have shown that the investigated adsorbent selectively adsorbs zirconium ions from their mixture with strontium and yttrium in the range of solution acidity pH = 0–1. The average percentage of maximum extraction of zirconium ions is 94.3 ± 2.4%, and the highest percent of zirconium ions taken up from the mixture with strontium and yttrium is ∼98.4%. Investigated titanium dioxide selectively separate 90Zr from 90Sr with the presence of 1000-fold excess of stable 88Sr in radioactive liquid β − source. This fact is extremely valuable for the age dating of 90Sr-containing device in nuclear forensics or the determination of 90Sr in low activity background samples.
Funding source: Nuclear Forensics
Award Identifier / Grant number: 9906
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by a research grant in Nuclear Forensics. STCU [Project 9906].
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M., Holden, N. E., Irrgeher, J., Loss, R. D., Walczyk, T., Prohaska, T. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265; https://doi.org/10.1515/pac-2015-0305.Search in Google Scholar
2. List of Adopted Double Beta (ββ) Decay Values. Brookhaven National Laboratory. Nuclear Science & Technology Department, National Nuclear Data Center (NNDC).Search in Google Scholar
3. Heiskanen, H., Mustonen, M. T., Suhonen, J. The theoretical half-life for beta decay of 96Zr. J. Phys. G Nucl. Part. Phys. 2007, 34, 837; https://doi.org/10.1088/0954-3899/34/5/005.Search in Google Scholar
4. Degueldre, C. Zirconia inert matrix for plutonium utilization and minor actinides disposition in reactors. J. Alloys Compd. 2007, 444, 36; https://doi.org/10.1016/j.jallcom.2006.11.203.Search in Google Scholar
5. Rawat, N., Mohapatra, P. K., Lakshmi, D. S., Bhattacharyya, A., Manchanda, V. K. Evaluation of a supported liquid membrane containing a macrocyclic ionophore for selective removal of strontium from nuclear waste solution. J. Membr. Sci. 2006, 275, 82; https://doi.org/10.1016/j.memsci.2005.09.006.Search in Google Scholar
6. Kavasi, N., Sahoo, S. K., Arae, H., Aono, T., Palacz, Z. Accurate and precise determination of 90Sr at femtogram level in IAEA proficiency test using thermal ionization mass spectrometry. Sci. Rep. 2019, 9, 16532; https://doi.org/10.1038/s41598-019-52890-3.Search in Google Scholar PubMed PubMed Central
7. Scott, C. W., Baxter Clin, M. R. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Biochem Rev. 2019, 40, 115; https://doi.org/10.33176/AACB-19-00024.Search in Google Scholar PubMed PubMed Central
8. Mayer, K., Wallenius, M., Fanghänel, T. Nuclear forensic science—from cradle to maturity. J. Alloys Compd. 2007, 444, 50; https://doi.org/10.1016/j.jallcom.2007.01.164.Search in Google Scholar
9. van Maris, V. R., Naji, M., Di Lemma, F. G., Colle, J.-Y., Bykov, D., Konings, R. J. M. The behaviour of parent and daughter nuclides in aerosols released in radiological dispersion events: a study of a SrTiO3 source. J. Raman Spectrosc. 2017, 48, 549; https://doi.org/10.1002/jrs.5076.Search in Google Scholar
10. Mayer, K., Wallenius, M., Varga, Z. Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem. Rev. 2012, 113, 884; https://doi.org/10.1021/cr300273f10.1021/cr300273f.Search in Google Scholar
11. Varga, Z., Nicholl, A., Wallenius, M., Mayer, K. Plutonium age dating (production date measurement) by inductively coupled plasma mass spectrometry. J. Radioanal. Nucl. Chem. 2015, 307, 1919–1926. https://doi.org/10.1007/s10967-015-4418-5.Search in Google Scholar PubMed PubMed Central
12. O’Hara, M. J., Murray, N. J., Carter, J. C., Kellogg, C. M., Link, J. M. Tandem column isolation of zirconium-89 from cyclotron bombarded yttrium targets using an automated fluidic platform: anion exchange to hydroxamate resin columns. J. Chromatogr. A 2018, 1567, 37; https://doi.org/10.1016/j.chroma.2018.06.035.Search in Google Scholar PubMed
13. Deri, M. A. Zirconium-89: Radiochemistry and Ligand Development toward Improved PET Applications; CUNY Academic Works, 2015. https://academicworks.cuny.edu/gc_etds/903.Search in Google Scholar
14. Surrao, A., Smith, S. W., Foerster, E., Spitz, H. B., Graczyk, D. G., Landero-Figueroa, J. A., McLain, D. R., Connick, W. B., Steeb, J. L. Improving the separation of strontium and barium with Sr resin using chelating eluent solutions. J. Radioanal. Nucl. Chem. 2019, 319; https://doi.org/10.1007/s10967-019-06432-w.Search in Google Scholar
15. McLain, D. R., Tsai, Y., Graczyk, D. G., Canaday, J. L. An alternative separation procedure for Sr-90 age dating using DGA resin. J. Radioanal. Nucl. Chem. 2018, 317, 1439–1445; https://doi.org/10.1007/s10967-018-6057-0.Search in Google Scholar
16. Dutta, B., Maiti, M., Lahiri, S. Production of 88,89Zr by proton induced activation of natY and separation by SLX and LLX. J. Radioanal. Nucl. Chem. 2009, 281, 663; https://doi.org/10.1007/s10967-009-0051-5.Search in Google Scholar
17. Zhang, A., Wei, Y., Hoshi, H., Kumagai, M. Adsorption and chromatographic separation of Mo(VI) and Zr(IV) ions from a high-concentration oxalic acid solution by a macroporous silica-based N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide polymeric adsorbent. Adsorpt. Sci. Technol. 2004, 22, 497; https://doi.org/10.1260/0263617042879519.Search in Google Scholar
18. Galamboš, M., Suchánek, P., Rosskopfová, O. Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J. Radioanal. Nucl. Chem. 2012, 293, 613.10.1007/s10967-012-1717-ySearch in Google Scholar
19. Veicht, M., Mihalcea, I., Cvjetinovic, D., Schumann, D. Radiochemical separation and purification of non-carrier-added silicon-32. Radiochim. Acta 2021, 109, 735–741; https://doi.org/10.1515/ract-2021-1070.Search in Google Scholar
20. Steeb, J. L., Graczyk, D. G., Tsai, Y., Mertz, C. J., Essling, A. M., Sullivan, V. S., Carney, K. P., Finck, M. R., Giglio, J. J., Chamberlain, D. B. Application of mass spectrometric isotope dilution methodology for 90Sr age-dating with measurements by thermal-ionization and inductively coupled-plasma mass spectrometry. J. Anal. Atomic Spectrom. 2013, 28, 1493; https://doi.org/10.1039/c3ja50136a.Search in Google Scholar
21. Mironyuk, I., Tatarchuk, T., Vasylyeva, H., Gun’ko, V. M., Mykytyn, I. Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr(II) cations. J. Mol. Liq. 2019, 282, 587; https://doi.org/10.1016/J.MOLLIQ.2019.03.026.Search in Google Scholar
22. Mironyuk, I., Tatarchuk, T., Vasylyeva, H., Naushad, M., Mykytyn, I. Adsorption of Sr(II) cations onto phosphate mesoporous titanium dioxide: mechanism, isotherm and kinetics studies. J. Environ. Chem. Eng. 2019, 7, 103430; https://doi.org/10.1016/j.jece.2019.103430.Search in Google Scholar
23. Mironyuk, I., Tatarchuk, T., Naushad, M., Vasylyeva, H., Mykytyn, I. Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. J. Mol. Liq. 2019, 285, 742; https://doi.org/10.1016/j.molliq.2019.04.111.Search in Google Scholar
24. Mironyuk, I., Mykytyn, I., Vasylyeva, H., Savka, K. Sodium-modified mesoporous TiO2: sol-gel synthesis, characterization and adsorption activity toward heavy metal cations. J. Mol. Liq. 2020, 316, 113840; https://doi.org/10.1016/j.molliq.2020.113840.Search in Google Scholar
25. Vasylyeva, H., Mironyuk, I., Mykytyn, I., Danyliyk, N. Adsorption of barium and zinc ions by mesoporous TiO2 with chemosorbed carbonate groups. Phys. Chem. Solid State 2019, 20, 282; https://doi.org/10.15330/pcss.20.3.282-290.Search in Google Scholar
26. Vasylyeva, H., Mironyuk, I., Mykytyn, I., Savka, K. Equilibrium studies of yttrium adsorption from aqueous solutions by titanium dioxide. Appl. Radiat. Isot. 2020, 168, 109473; https://doi.org/10.1016/j.apradiso.2020.109473.Search in Google Scholar PubMed
27. Vasylyeva, H., Mironyuk, I., Mykytyn, I. M. Аdsorption of Co2+ and radioactive 60Со by mesoporous TiO2. Chem. Phys. Technol. Surf. 2019, 10, 446; https://doi.org/10.15407/hftp10.04.446.Search in Google Scholar
28. Marks, N. A., Carter, D. J., Sassi, M., Rohl, A. L., Sickafus, K. E., Uberuaga, B. P., Stanek, C. R. Chemical evolution via beta decay: a case study in strontium-90. J. Phys. Condens. Matter 2013, 25, 065504; https://doi.org/10.1088/0953-8984/25/6/065504.Search in Google Scholar PubMed
29. Schwarzenbach, G., Flaschka, H. A. Complexometric Titrations. Translated [from German] and rev. in collaboration with the authors by H.M.N.H. Irving; Methuen: London, 1969; p. 490.Search in Google Scholar
30. Adamson, A. W. Physical Chemistry of Surfaces, 3rd ed.; Wiley-Interscience: New York, 1976; p. 698.Search in Google Scholar
31. Plazinski, W., Rudzinski, W., Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv. Colloid Interface Sci. 2009, 152, 2; https://doi.org/10.1016/j.cis.2009.07.009.Search in Google Scholar PubMed
32. Wu, F.-C., Tseng, R.-L., Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366; https://doi.org/10.1016/j.cej.2009.01.014.Search in Google Scholar
33. Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res. 2017, 120, 88; https://doi.org/10.1016/j.watres.2017.04.014.Search in Google Scholar PubMed
34. Kanthasamy, S., Hadibarata, T., Hidayat, T., Alamri, S. A., Al-Ghamdi, A. A. Adsorption of azo and anthraquinone dye by using watermelon peel powder and corn peel powder: equilibrium and kinetic studies. Biointerface Res. Appl. Chem. 2020, 10, 4706; https://doi.org/10.33263/BRIAC101.706713.Search in Google Scholar
35. Vasylyeva, H., Mironyuk, I., Strilchuk, M., Tryshyn, V., Gaidar, O., Vasyliev, O. Adsorption of zirconium ions by X-type zeolite. Biointerface Res. Appl. Chem. 2021, 11, 13421; https://doi.org/10.33263/BRIAC115.1342113431.Search in Google Scholar
36. Vilas, V. V., Millet, S., Sandow, M., Iglesias Pérez, L., Serrano-Purroy, D., Van Winckel, S., Aldave de las Heras, L. An automated sea FAST ICP-DRC-MS method for the determination of 90Sr in spent nuclear fuel leachates. Molecules 2020, 25, 1429; https://doi.org/10.3390/molecules25061429.Search in Google Scholar PubMed PubMed Central
37. Staryk, V. E., Grinzburg, F. L., Rayevsky, B. N. Investigation of radioactive isotopes’ state by diffusion method. Diffusion coefficients of Sr (II), Ce (III), Am (III), Th (IV), Pu (IV), Np (V). Radiochemistry 1964, 6, 468 (in Russian).Search in Google Scholar
38. Ekberg, C., Källvenius, G., Albinsson, Y., Brown, P. L. Studies on the hydrolytic behavior of zirconium (IV). J. Solut. Chem. 2004, 33, 47; https://doi.org/10.1023/B:JOSL.0000026645.41309.d3.10.1023/B:JOSL.0000026645.41309.d3Search in Google Scholar
39. Atlas of Eh-pH Diagrams. Inter comparison of thermodynamic databases Geological Survey of Japan Open File Report No. 419, 2005.Search in Google Scholar
40. Zattoni, A. P.. Separation and Analysis of Sr-90 and Zr-90 for Nuclear Forensic Applications; Laval University: Quebec, Canada, 2015. 31654.pdf (ulaval.ca). http://hdl.handle.net/20.500.11794/26052.Search in Google Scholar
41. Illemassène, M., Mompean, F., Perrone, J. Chemical, Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with Selected Organic Ligands, 1st ed.; Elsevier B.V.: Amsterdam, Netherlands, 2005. eBook ISBN: 9780080457529.Search in Google Scholar
42. Horwitz, E. P., McAlister, D. R., Bond, A. H., Barrans, R. E. Novel extraction chromatographic resins based on tetra alkyl diglycolamides: characterization and potential applications. Solvent Extr. Ion Exch. 2005, 23, 319; https://doi.org/10.1081/SEI-200049898.Search in Google Scholar
43. McAlister, D. R., Horwitz, E. P. Selective separation of radium and actinium from bulk thorium target material on strong acid cation exchange resin from sulfate media. Appl. Radiat. Isot. 2018, 140, 18; https://doi.org/10.1016/j.apradiso.2018.06.008.Search in Google Scholar PubMed
44. Horwitz, E. P., McAlister, D. R., Thakkar, A. H. Synergistic enhancement of the extraction of trivalent lanthanides and actinides by tetra-(n-octyl) diglycolamide from chloride media. Solvent Extr. Ion Exch. 2008, 26(1), 12–24; https://doi.org/10.1080/07366290701779423.Search in Google Scholar
45. Kołacińska, K., Samczyński, Z., Dudek, J., Bojanowska-Czajka, A., Trojanowicz, M. A comparison study on the use of Dowex 1 and TEVA-resin in determination of 99Tc in environmental and nuclear coolant samples in a SIA system with ICP-MS detection. Talanta 2018, 184, 527; https://doi.org/10.1016/j.talanta.2018.03.034.Search in Google Scholar PubMed
46. McLain, D. R., Amato, V., Sudowe, R. Effects of urban debris material on the extraction chromatographic separation of strontium—part I: steel. J. Radioanal. Nucl. Chem. 2017, 314, 2585; https://doi.org/10.1007/s10967-017-5599-x.Search in Google Scholar
47. McLain, D. R., Liu, K., Sudowe, R. Effects of urban debris material on the extraction chromatographic separation of strontium: part II: cement and concrete. J. Radioanal. Nucl. Chem. 2017, 314, 2591; https://doi.org/10.1007/s10967-017-5609-z.Search in Google Scholar
48. Paučová, V., Drábová, V., Strišovská, J., Balogh, S. A comparison of extraction chromatography TEVA resin and MRT AnaLig Tc-02 methods for 99Tc determination. J. Radioanal. Nucl. Chem. 2012, 293, 309.10.1007/s10967-012-1653-xSearch in Google Scholar
49. Dulanska, S., Boris Remenec, B., Bilohuštin, J., Labaška, M., Galanda, D. Rapid determination of 90Sr in urine samples using AnaLig© Sr-01. J. Radioanal. Nucl. Chem. 2013, 295, 2189; https://doi.org/10.1007/s10967-012-2318-5.Search in Google Scholar
50. Zweit, J., Downey, S., Sharma, H. L. Production of no-carrier added zirconium-89 for positron emission tomography. Int. J. Radiat. Appl. Instrum. Appl. Radiat. Isot. 1991, 42, 199; https://doi.org/10.1016/0883-2889(91)90074-b.Search in Google Scholar
51. Tazoe, H., Obata, H., Yamagata, T., Karube, Z. I., Nagai, H., Yamada, M. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring. Talanta 2016, 152, 219; https://doi.org/10.1016/j.talanta.2016.01.065.Search in Google Scholar PubMed
52. Abou, D. S., Pickett, J., Mattson, J. E., Thorek, D. L. J. A radium-223 microgenerator from cyclotron-produced trace actinium-227. Appl. Radiat. Isot. 2017, 119, 36; https://doi.org/10.1016/j.apradiso.2016.10.015.Search in Google Scholar PubMed PubMed Central
53. Mackay, K. M., Mackay, R. A., Henderson, W. Introduction to Modern Inorganic Chemistry, 5th ed.; Blackie Academic and Professional, and Imprint of Chapman and Hall: 2-6 Boundary Row, London, UK, 1996.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey
Articles in the same Issue
- Frontmatter
- Original Papers
- Effect of adding dodecanol as modifier to N,N,N′,N′-tetra-n-hexyl-3,6-dithiaoctane-1,8-diamide silica-based adsorbent on the adsorption behaviors of platinum-group metals and other metals from simulated high-level liquid waste
- A new way to ensure selective zirconium ion adsorption
- Determination of radioprotective and genotoxic properties of sulfamide derivatives
- Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model
- Instrumental neutron activation analysis (INAA) of zinc concentrations in scalp hair and fingernails samples of Algerian females with breast cancer
- Soil mineral analysis and environmental radioactivity in Ghizer, Eastern Hindukush, Pakistan
- Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey