Home Purification of 89Sr from FBTR irradiated Yttria target by extraction chromatography using HDEHP impregnated XAD-7 resin
Article
Licensed
Unlicensed Requires Authentication

Purification of 89Sr from FBTR irradiated Yttria target by extraction chromatography using HDEHP impregnated XAD-7 resin

  • Ashok Kumar Gundu Venkata Surya ORCID logo EMAIL logo , Jayagopal Vithya , Senthilvadivu Rajarajan and Ramalingam Kumar
Published/Copyright: January 20, 2021

Abstract

89Sr is used in bone pain palliative care of cancer patients and the same is being produced presently via the 89Y(n, p)89Sr reaction by irradiating yttria target in Fast Breeder Test Reactor (FBTR). An efficient separation method was standardized for the removal of bulk yttrium target by extraction chromatography using di(2-ethylhexyl) phosphoric acid (HDEHP) impregnated on XAD-7 resin. In the present paper, the extraction behavior of Sr(II) and Y(III) was studied as a function of the concentration of nitric acid in the aqueous phase and concentration of HDEHP in the resin phase. The separation of Sr(II) and Y(III) was standardized using the above resins and the method was subsequently applied satisfactorily for the removal of yttrium from the dissolver solution of FBTR irradiated yttria pellet towards the purification of 89Sr. A baseline separation of 89Sr and Y was achieved. Leaching and breakthrough capacity studies were evaluated for the resins and it was established that the stability and capacity of the resins were satisfactory. The breakthrough capacity was found to be 12 mg Y(III) per gram of the HDHEP resin whereas the leaching studies established that the resins are stable for multiple cycle of operations.


Corresponding author: Ashok Kumar Gundu Venkata Surya, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Chennai, India, E-mail:

Acknowledgment

The authors sincerely thank Actinide Chemistry and Separation Science Section, Fuel Chemistry Division, for extending the service for the sample analysis by FT-IR.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635; https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar

2. Risovanyi, V. Radioactive isotope production in the fast neutron nuclear reactors. J. Phys.: Conf. Ser. 2020, 1475, 012015; https://doi.org/10.1088/1742-6596/1475/1/012015.Search in Google Scholar

3. Karelin, Y. A., Efimov, V. N., Filimonov, V. T., Kuznetsov, R. A., Revyakin, Y. L., Andreev, O. I., Zhemkov, I. Y., Bukh, V. G., Lebedev, V. M., Spiridonov, Y. N. Radionuclide production using a fast flux reactor. Appl. Radiat. Isot. 2000, 53, 825; https://doi.org/10.1016/s0969-8043(00)00236-0.Search in Google Scholar

4. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297; https://doi.org/10.1524/ract.2001.89.4-5.297.Search in Google Scholar

5. Pandit-Taskar, N., Batraki, M., Divgi, C. R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J. Nucl. Med. 2004, 45, 1358.Search in Google Scholar

6. Finlay, I. G., Mason, M. D., Shelley, M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005, 6, 392; https://doi.org/10.1016/s1470-2045(05)70206-0.Search in Google Scholar

7. Fuster, D., Herranz, R., Vidal-Sicart, S., Munoz, M., Conill, C., Mateos, J. J., Martin, F., Pons, F. Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl. Med. Commun. 2000, 21, 623; https://doi.org/10.1097/00006231-200007000-00004.Search in Google Scholar

8. Serafini, A. N. Therapy of metastatic bone pain. J. Nucl. Med. 2001, 42, 895.Search in Google Scholar

9. Larson, S. M., Krenning, E. P. A pragmatic perspective on molecular targeted radionuclide therapy. J. Nucl. Med. 2005, 46, 1S.Search in Google Scholar

10. Manual for Reactor Produced Radioisotopes. International Atomic Energy Agency: Vienna, IAEA-TECDOC-1340 2003, 206.Search in Google Scholar

11. Chuvilin, D. Y., Khvostionov, V. E., Markovskij, D. V., Pavshook, V. A., Ponomarev Stepnoy, N. N., Udovenko, A. N., Shatrov, A. V., Vereschagin, Y. I., Rice, J., Tome, L. A. Production of 89Sr in solution reactor. Appl. Radiat. Isot. 2007, 65, 1087; https://doi.org/10.1016/j.apradiso.2007.05.002.Search in Google Scholar

12. Qaim, S. M., Tárkányi, F., Capote, R. Nuclear data for the production of therapeutic radionuclides. In Internat. Atomic Energy Agency Technical Reports Series No. 473; IAEA: Vienna, 2011; p. 126.Search in Google Scholar

13. Klopries, R. M., Dóczi, R., Sudar, S., Csikai, J., Qaim, S. M. Excitation functions of some neutron threshold reactions on 89Y in the energy range of 7.8 to 14.7 MeV. Radiochim. Acta 1997, 76, 3; https://doi.org/10.1524/ract.1997.76.12.3.Search in Google Scholar

14. Spahn, I., Coenen, H. H., Qaim, S. M. Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim. Acta 2004, 92, 183; https://doi.org/10.1524/ract.92.3.183.30489.Search in Google Scholar

15. Kayurin, O. Y., Nerozin, N. A., Pavlovich, V. B., Smetanin, E. Y., Tkachev, S. V., Shapovalov, V. V. Preparation of high-specific-activity 89Sr. Radiochemistry 2002, 44, 282; https://doi.org/10.1023/a:1020310924618.10.1023/A:1020310924618Search in Google Scholar

16. Usarov, Z. O., Khuzhaev, S., Abdukayumov, M. N., Rikhsiev, A. Z., Abdusalyamov, N. N., Mirzaeva, N. Preparation of 89Sr chloride. Radiochemistry 2008, 50, 411; https://doi.org/10.1134/s1066362208040140.Search in Google Scholar

17. Zvonarev, A. V., Matveenko, I. P., Pavlovich, V. B., Podsoblyaev, D. A., Poplavskii, V. M., Smetanin, É. Y., Khomyakov, Y. S., Tsibulya, A. M., Chernyi, V. A., Gadzhiev, G. I., Korol’kov, A. S. 89Sr Production in fast reactors. Atom. Energy 1997, 82, 394; https://doi.org/10.1007/bf02418738.Search in Google Scholar

18. Ashok Kumar, G. V. S., Venkata Subramani, C. R., Kumar, R., Sivakumar, S., Murugan, S., Varadharajan, S., Sureshkumar, K. V., Ananthasivan, K., Joseph, M., Srinivasan, G. Design, installation and preliminary flux measurements at the fast flux experimental facility (FFEF) of the fast breeder test reactor (FBTR). J. Radioanal. Nucl. Chem. 2019, 320, 255; https://doi.org/10.1007/s10967-019-06463-3.Search in Google Scholar

19. Saha, D., Vithya, J., Ashok Kumar, G. V. S., Swaminathan, K., Kumar, R., Venkata Subramani, C. R., Vasudeva Rao, P. R. Feasibility studies for production of 89Sr in the fast breeder test reactor (FBTR). Radiochim. Acta 2013, 101, 667; https://doi.org/10.1524/ract.2013.2055.Search in Google Scholar

20. Saha, D., Vithya, J., Kumar, R., Venkata Subramani, C. R., Vasudeva Rao, P. R. Studies on the separation of 89Sr(II) from irradiated yttria target using 4, 4′(5′) di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6) by solvent extraction technique. Radiochim. Acta 2016, 104, 195.10.1515/ract-2015-2399Search in Google Scholar

21. Saha, D., Vithya, J., Kumar, R., Joseph, M. Studies on purification of 89Sr from irradiated yttria target by multi-column extraction chromatography using DtBuCH18-C-6/XAD-7 resin. Radiochim. Acta 2019, 107, 479; https://doi.org/10.1515/ract-2018-2997.Search in Google Scholar

22. Braun, T., Ghersini, G. Extraction Chromatography, Journal of Chromatography Library, Vol. 2; Elsevier Science & Technology: London, 1975.Search in Google Scholar

23. Kumar, R., Sivaraman, N., Thiruvenkadasamy, A., Venkata Subramani, C. R., Vasudeva Rao, P. R. Carrier-free separation of 22Na from magnesium by chromatographic techniques. J. Radioanal. Nucl. Chem. 2002, 251, 21; https://doi.org/10.1023/a:1015081808476.10.1023/A:1015081808476Search in Google Scholar

24. Negrea, A., Ciopec, M., Lupa, L., Davidescu, C. M., Popa, A., Negrea, P., Motoc, M. Adsorption of arsenate anions from aqueous medium by using Fe(III) loaded XAD7-DEHPA impregnated resin. Rev. Chem. 2011, 62, 1008.Search in Google Scholar

25. Benamor, M., Bouariche, Z., Belaid, T., Draa, M. T. Kinetic studies on cadmium ions by Amberlite XAD7 impregnated resins containing di(2-ethylhexyl) phosphoric acid as extractant. Separ. Purif. Technol. 2008, 59, 74; https://doi.org/10.1016/j.seppur.2007.05.031.Search in Google Scholar

26. Davidescu, C. M., Ciopec, M., Negrea, A. D., Popa, A., Lupa, L., Negrea, P. E., Muntean, C. O., Motoc, M. A. Use of di-(2-ethylhexyl) phosphoric acid (DEHPA) impregnated XAD7 copolymer resin for the removal of chromium (III) from water. Rev. Chem. 2011, 62, 712.Search in Google Scholar

27. Lee, G. S., Uchikoshi, M., Mimura, K., Isshiki, M. Distribution coefficients of La, Ce, Pr, Nd, and Sm on Cyanex 923-, D2EHPA-, and PC88A-impregnated resins. Separ. Purif. Technol. 2009, 67, 79; https://doi.org/10.1016/j.seppur.2009.03.033.Search in Google Scholar

28. Saipriya, K., Kumaresan, R., Nayak, P. K., Venkatesan, K. A., Kumar, T., Antony, M. P. Extraction behaviour of Am (III) and Eu (III) from nitric acid medium in CMPO-HDEHP impregnated resins. Radiochim. Acta 2016, 104, 67; https://doi.org/10.1515/ract-2016-2612.Search in Google Scholar

29. Wojcik, G., Pasieczna-Patkowska, S., Hubicki, Z., Ryczkowski, J. Investigation of platinum (IV) ions sorption on SIRs by using photoacoustic and DRS methods. Eur. Phys. J. Spec. Top. 2008, 154, 373; https://doi.org/10.1140/epjst/e2008-00578-1.Search in Google Scholar

30. Partridge, J. A., Jensen, R. C. Purification of Di-(2-ethylhexyl) phosphoric acid by precipitation of copper(II) di-(2-ethylhexyl) phosphate. J. Inorg. Nucl. Chem. 1969, 31, 2587; https://doi.org/10.1016/0022-1902(69)80591-9.Search in Google Scholar

31. Shu, Q., Khayambashi, A., Wang, X., Wei, Y. Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis (2-ethylhexyl) phosphoric acid impregnated polymeric adsorbent. Adsorpt. Sci. Technol. 2018, 36, 1049; https://doi.org/10.1177/0263617417748112.Search in Google Scholar

32. Draa, M. T., Belaid, T., Benamor, M. Extraction of Pb (II) by XAD7 impregnated resins with organophosphorus extractants (DEHPA, IONQUEST 801, CYANEX 272). Separ. Purif. Technol. 2001, 40, 77.10.1016/j.seppur.2004.01.006Search in Google Scholar

33. Manchanda, V. K., Pathak, P. N., Mohapatra, P. K. New Developments in thorium, uranium, and plutonium extraction, ion exchange and solvent extraction. Ser. Adv. 2009, 19, 65; https://doi.org/10.1201/9781420059700-c2.Search in Google Scholar

34. Saipriya, G., Kumaresan, R., Nayak, P. K., Venkatesan, K. A., Kumar, T., Antony, M. P. Extraction behaviour of Am(III) and Eu(III) from nitric acid medium in TEHDGA-HDEHP impregnated resins. Radiochim. Acta 2016, 104, 781; https://doi.org/10.1515/ract-2016-2612.Search in Google Scholar

35. Eftekhari Zadeh, E., Feghhi, S. A. H., Bayat, E., Roshani, G. H. Gaussian energy broadening function of an HPGe detector in the range of 40 keV to 1.46 MeV. J. Exp. Phys. 2014, 2014. https://doi.org/10.1155/2014/623683.Search in Google Scholar

36. Haba, H., Motomura, S., Kamino, S., Enomoto, S., Tracer technique. In Handbook of Nuclear Chemistry; Vértes, A., Nagy, S., Klencsár, Z., Lovas, R. G., Rösch, F., Eds. Springer: Boston, MA, 2011. https://doi.org/10.1007/978-1-4419-0720-2_35.Search in Google Scholar

37. Ashok Kumar, G. V. S., Sen, S., Radha, E., Brahmaji Rao, J. S., Acharya, R., Kumar, R., Venkatasubramani, C. R., Reddy, A. V. R., Joseph, M. Studies on neutron spectrum characterization for the pneumatic fast transfer system (PFTS) of KAMINI reactor. Appl. Radiat. Isot. 2017, 124, 49; https://doi.org/10.1016/j.apradiso.2017.03.009.Search in Google Scholar

38. Watanabe, S., Goto, I., Nomura, K., Sano, Y., Koma, Y. Extraction chromatography experiments on repeated operation using engineering scale column system. Energy Procedia 2011, 7, 449; https://doi.org/10.1016/j.egypro.2011.06.060.Search in Google Scholar

39. Ashok Kumar, G. V. S., Vithya, J., Kumar, B. S., Saha, D., Kumar, R., Venkatasubramani, C. R. Purification of 89Sr source obtained from 89Y(n,p)89Sr by ion-exchange chromatography using tri-sodium tri-meta phosphate (SMP) as eluant. J. Radioanal. Nucl. Chem. 2014, 302, 803; https://doi.org/10.1007/s10967-014-3253-4.Search in Google Scholar

40. Saha, D., Senthil Vadivu, E., Kumar, R., Venkata Subramani, C. R. Separation of bulk Y from 89Y(n,p) produced 89Sr by extraction chromatography using TBP coated XAD-4 resin. J. Radioanal. Nucl. Chem. 2013, 298, 1309; https://doi.org/10.1007/s10967-013-2514-y.Search in Google Scholar

Received: 2020-07-20
Accepted: 2020-12-14
Published Online: 2021-01-20
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0075/html
Scroll to top button