Abstract
In this work, batch experiments were carried out to explore the sorption properties for perrhenate (ReO4−, a surrogate for TcO4−) by two types of commercial bifunctional anion-exchange resins (Purolite A530E and A532E). It is found that these two bifunctional anion-exchange resins could rapidly remove ReO4− from aqueous solution within 150 min and the maximum sorption capacity for ReO4− reached as high as 707 and 446 mg/g for Purolite A530E and A532E, respectively. The sorption properties were independent of pH over a wide range from 1 to 13. More importantly, both Purolite A530E and A532E exhibited excellent selectivity for the removal of ReO4− in the presence of large excess of NO3− and SO42−. Finally, the removal percentage of ReO4− by these two resins could be >90% and 80%, respectively, from the Hanford low-level waste melter off-gas scrubber simulant stream. Such high selectivity of Purolite A530E and A532E for the removal of ReO4− might be due to the presence of the long-chain group of –[N(Hexyl)3]+, which favored hydrophobic and large anions such as ReO4−/TcO4− rather than NO3−.
Acknowledgements
We acknowledge the financial supports from the National Natural Science Foundation of China (21790370, 21790374, 11605118, U1732112), the Natural Science Foundation of Jiangsu Province (BK20150313), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF16003), “Young Thousand Talented Program” in China, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
References
1. Lieser, K. H.: Technetium in the nuclear fuel cycle, in medicine and in the environment. Radiochim. Acta 63, 5 (1993).10.1524/ract.1993.63.special-issue.5Search in Google Scholar
2. Dickson, J. O., Harsh, J. B., Flury, M., Lukens, W. W., Pierce, E. M.: Competitive incorporation of perrhenate and nitrate into sodalite. Environ. Sci. Technol. 21, 12851 (2014).10.1021/es503156vSearch in Google Scholar PubMed
3. Darab, J. G., Smith, P. A.: Chemistry of technetium and rhenium species during low-level radioactive waste vitrification. Chem. Mater. 8(5), 1004 (1996).10.1021/cm950418+Search in Google Scholar
4. Helz, G. R., Dolor, M. K.: What regulates rhenium deposition in euxinic basins? Chem. Geol. 304, 131 (2012).10.1016/j.chemgeo.2012.02.011Search in Google Scholar
5. Cui, D., Eriksen, T. E.: Reduction of pertechnetate by ferrous iron in solution: influence of sorbed and precipitated Fe (II). Environ. Sci. Technol. 30, 2259 (1996).10.1021/es9506263Search in Google Scholar
6. Kang, M. J., Rhee, S. W., Moon, H.: Sorption of MO4− (M=Tc, Re) on Mg/Al layered double hydroxide by anion exchange. Radiochim. Acta 75, 169 (1996).10.1524/ract.1996.75.3.169Search in Google Scholar
7. Wang, S., Yu, P., Purse, B. A., Orta, M. J., Diwu, J., Casey, W. H., Phillips, B. L., Alekseev, E. V., Depmeier, W., Hobbs, D. T., Albrecht-Schmitt, T. E.: Selectivity, kinetics, and efficiency of reversible anion exchange with TcO4− in a supertetrahedral cationic framework. Adv. Funct. Mater. 22, 2241 (2012).10.1002/adfm.201103081Search in Google Scholar
8. Wang, S. A., Alekseev, E. V., Diwu, J. Casey, W. H., Phillips, B. L., Depmeier, W., Albrecht-Schmitt, T. E.: NDTB-1: a supertetrahedral cationic framework that removes TcO4− from solution. Angew. Chem. Int. Ed. 6, 1057 (2010).10.1002/anie.200906397Search in Google Scholar PubMed
9. Stepinski, D. C., Vandegrift, G. F., Shkrob, I. A., Wishart, J. F., Kerr, K., Dietz, M. L., Qadah, D. T. D., Garvey, S. L.: Extraction of tetra-oxo anions into a hydrophobic, ionic liquid-based solvent without concomitant ion exchange. Ind. Eng. Chem. Res. 49, 5863 (2010).10.1021/ie1000345Search in Google Scholar
10. Wilmarth, W. R., Lumetta, G. J., Johnson, M. E., Poirier, M. R., Thompson, M. C., Suggs, P. C., Machara, N. P.: Review: waste-pretreatment technologies for remediation of legacy defense nuclear wastes. Solvent Extr. Ion Exch. 29, 1 (2011).10.1080/07366299.2011.539134Search in Google Scholar
11. Zagorodni, A. A.: Ion exchange materials: properties and applications (2006), Elsevier, Amsterdam.10.1016/B978-008044552-6/50006-XSearch in Google Scholar
12. Petrović, Đ., Đukić, A., Kumrić, K., Babić, B., Momčilović, M., Ivanović, N., Matović, L.: Mechanism of sorption of pertechnetate onto ordered mesoporous carbon. J. Radioanal. Nucl. Chem. 302, 217 (2014).10.1007/s10967-014-3249-0Search in Google Scholar
13. Zamboulis, D., Misaelides, P., Bakoyannakis, D., Godelitsas, A., Barbayannis, N., Stalides, G., Anousis, I.: Perrhenate ion uptake by aluminium hydroxide gels. J. Radioanal. Nucl. Chem. 208, 507 (1996).10.1007/BF02040068Search in Google Scholar
14. Kang, M. J., Chun, K. S., Rhee, S. W., Do, Y.: Comparison of sorption behavior of I− and TcO4− on Mg/Al layered double hydroxide. Radiochim. Acta 85, 57 (1999).10.1524/ract.1999.85.12.57Search in Google Scholar
15. Custelcean, R., Moyer, B. A.: Anion separation with metal–organic frameworks. Eur. J. Inorg. Chem. 2007, 1321 (2007).10.1002/ejic.200700018Search in Google Scholar
16. Colinas, I. R., Silva, R. C., Oliver, S. R. J.: Reversible, selective trapping of perchlorate from water in record capacity by a cationic metal–organic framework. Environ. Sci. Technol. 50, 1949 (2016).10.1021/acs.est.5b03455Search in Google Scholar PubMed
17. Zhu, L., Xiao, C., Dai, X., Li, J., Gui, D., Sheng, D., Chen, L., Zhou, R., Chai, Z., Albrecht Schmitt, T. E., Wang, S.: Exceptional perrhenate/pertechnetate uptake and subsequent immobilization by a low-dimensional cationic coordination polymer: overcoming the Hofmeister bias selectivity. Environ. Sci. Technol. Lett. 4, 316 (2017).10.1021/acs.estlett.7b00165Search in Google Scholar
18. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, D., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Identifying the recognition site for selective trapping of 99TcO4− in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc.139, 14873 (2017).10.1021/jacs.7b08632Search in Google Scholar PubMed
19. Alberto, R., Bergamaschi, G., Braband, H., Fox, T., Amendola, V.: 99TcO4−: Selective recognition and trapping in aqueous solution. Angew. Chem. Int. Ed. 51, 9772 (2012).10.1002/anie.201205313Search in Google Scholar PubMed
20. Han, D., Li, X., Peng, J., Xu, L., Li, J., Li, H., Zhai, M.: A new imidazolium-based polymeric ionic liquid gel with high adsorption capacity for perrhenate. RSC. Adv. 6, 69052 (2016).10.1039/C6RA12239FSearch in Google Scholar
21. Li, Y., Wang, Q., Li, Q., Zhang, Z., Zhang, L., Liu, X.: Simultaneous speciation of inorganic rhenium and molybdenum in the industrial wastewater by amino-functionalized nano-SiO2. J. Taiwan. Inst. Chem. E. 55, 126 (2015).10.1016/j.jtice.2015.04.012Search in Google Scholar
22. Fei, H., Paw U. L., Rogow, D. L., Bresler, M. R., Abdollahian, Y. A., Oliver, S. R.: Synthesis, characterization, and catalytic application of a cationic metal−organic framework: Ag2(4,4′-bipy)2(O3SCH2CH2SO3). Chem. Mater. 22, 2027 (2010).10.1021/cm9032308Search in Google Scholar
23. Fei, H., Bresler, M. R., Oliver, S. R. J.: A new paradigm for anion trapping in high capacity and selectivity: crystal-to-crystal transformation of cationic materials. J. Am. Chem. Soc. 133, 11110 (2011).10.1021/ja204577pSearch in Google Scholar PubMed
24. Ashley, K. R., Ball, J. R., Pinkerton, A. B., Abney, K. D., Norman, C.: Sorption behavior of pertechnetate on reillex (tm)-HPQ anion exchange resin from nitric acid solution. Solvent Extr. Ion Exch. 12, 239 (1994).10.1080/07366299408918210Search in Google Scholar
25. Long, K. M., Goff, G. S., Ware, S. D., Jarvinen, G. D., Runde, W. H.: Anion exchange resins for the selective separation of technetium from uranium in carbonate solutions. Ind. Eng. Chem. Res. 51, 10445 (2012).10.1021/ie300534eSearch in Google Scholar
26. Bond, A. H., Chang, F. W., Thakkar, A. H., Williamson, J. M., Gula, M. J., Harvey, J. T., Griffin, S. T., Rogers, R. D., Horwitz, E. P.: Design, synthesis, and uptake performance of ABEC resins for the removal of pertechnetate from alkaline radioactive wastes. Ind. Eng. Chem. Res. 4, 1676 (1999).10.1021/ie980072nSearch in Google Scholar
27. Bond, A. H., Gula, M. J., Harvey, J. T., Duffey, J. M., Horwitz, E. P., Griffin, S. T., Rogers, R. D., Collins, J. L.: Flowsheet feasibility studies using ABEC resins for removal of pertechnetate from nuclear wastes. Ind. Eng. Chem. Res. 4, 1683 (1999).10.1021/ie980611oSearch in Google Scholar
28. Kawasaki, M., Omori, T., Hasegawa, K.: Adsorption of pertechnetate on an anion exchange resin. Radiochim. Acta 63, 53 (1993).10.1524/ract.1993.63.special-issue.53Search in Google Scholar
29. Gu, B., Brown, G. M., Bonnesen, P. V., Liang, L., Moyer, B. A., Ober, R., Alexandratos, S. D.: Development of novel bifunctional anion-exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol. 6, 1075 (2000).10.1021/es990951gSearch in Google Scholar
30. Bonnesen, P. V., Brown, G. M., Alexandratos, S. D., Bavoux, L. B., Presley, D. J., Patel, V., Ober, R., Moyer, B. A.: Development of bifunctional anion-exchange resins with improved selectivity and sorptive kinetics for pertechnetate: batch-equilibrium experiments. Environ. Sci. Technol. 17, 3761 (2000).10.1021/es990858sSearch in Google Scholar
31. Duncan, J. B.: Removal of technetium 99 from the effluent treatment facility (Etf) basin 44 waste using purolite A-530E and Reillex Hpq and Sybron Ionac Sr-7 ion exchange resins. No. Rpp-Rpt – 23199, Rev 0. Hanford Site (2004).10.2172/940010Search in Google Scholar
32. Duncan, J. B., Moore, W. P., Hagerty, K. J., Johnson, J. M.: Laboratory report on the removal of pertechnetate from Tank 241-AN-105 simulant using Purolite A530E (2012). No. LAB-RPT-12-00002, Rev 0. Hanford Site (HNF), Richland, WA (United States).10.2172/1047875Search in Google Scholar
33. Zhu, Y., Gao, N., Wang, Q., Wei, X.: Adsorption of perchlorate from aqueous solutions by anion exchange resins: effects of resin properties and solution chemistry. Colloids and Surfaces A: Physicochem. Eng. 468, 114 (2015).10.1016/j.colsurfa.2014.11.062Search in Google Scholar
34. Banerjee, D., Xu, W., Nie, Z., Johnson, L. E., Coghlan, C., Sushko, M. L., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Thallapally, P. K.: Zirconium-based metal–organic framework for removal of perrhenate from water. Inorg. Chem. 55, 8241 (2016).10.1021/acs.inorgchem.6b01004Search in Google Scholar PubMed
35. Hu, H., Jiang, B., Zhang, J., Chen, X.: Adsorption of perrhenate ion by bio-char produced from acidosasa edulis shoot shell in aqueous solution. RSC. Adv. 5, 104769 (2015).10.1039/C5RA20235CSearch in Google Scholar
36. Xiong, C., Yao, C., Wu, X.: Adsorption of rhenium (VII) on 4-amino-1,2,4-triazole resin. Hydrometallurgy 90, 221 (2008).10.1016/j.hydromet.2007.10.011Search in Google Scholar
37. Sheng, D., Zhu, L., Xu, C., Xiao, C., Wang, Y., Wang, Y., Chen, L., Diwu, J., Chen, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Efficient and selective uptake of TcO4− by a cationic metal–organic framework material with open Ag+ sites. Environ. Sci. Technol. 51, 3471 (2017).10.1021/acs.est.7b00339Search in Google Scholar PubMed
38. Wang, J., Li, A., Xu, L., Zhou, Y.: Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu (II) on their removal. J. Hazard. Mater. 169, 794 (2009).10.1016/j.jhazmat.2009.04.013Search in Google Scholar PubMed
39. Gupta, N., Balomajumder, C., Agarwal, V. K.: Adsorption of cyanide ion on press-mud surface: a modeling approach. Chem. Eng. J. 191, 548 (2012).10.1016/j.cej.2012.03.028Search in Google Scholar
40. Chen, R., Yang, Q., Zhong, Y., Li, X., Liu, Y., Li, X. M., Du, G. M., Zeng, G. M.: Sorption of trace levels of bromate by macroporous strong base anion exchange resin: influencing factors, equilibrium isotherms and thermodynamic studies. Desalination 344, 306 (2014).10.1016/j.desal.2014.04.001Search in Google Scholar
41. Pehlivan, E., Cetin, S.: Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. J. Hazard. Mater. 163, 448 (2009).10.1016/j.jhazmat.2008.06.115Search in Google Scholar PubMed
42. Zu, J., Ye, M., Wang, P., Tang, F., He, L.: Design of a strong-base anion exchanger and its adsorption and elution behavior for rhenium (VII). RSC. Adv. 6, 18868 (2016).10.1039/C5RA25313FSearch in Google Scholar
43. Zu, J. H., Wei, Y. Z., Ye, M. S., Tang, F. D., He, L. F., Liu, R. Q.: Preparation of a new anion exchanger by pre-irradiation grafting technique and its adsorptive removal of rhenium (VII) as analogue to 99Tc. Nucl. Sci. Tech. 26, S10302 (2015).Search in Google Scholar
44. Yan, Y., Yi, M., Zhai, M., Ha, H., Luo, Z., Xiang, X.: Adsorption of ReO4− ions into polyDMAEMA hydrogels prepared by UV-induced polymerization. React. Funct. Polym. 59, 149 (2004).10.1016/j.reactfunctpolym.2004.01.004Search in Google Scholar
45. Lou, Z., Wang, J., Jin, X., Wan, L., Wang, Y., Chen, H., Shan, E., Xiong, Y.: Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chem. Eng. J. 273, 231 (2015).10.1016/j.cej.2015.03.054Search in Google Scholar
46. Banerjee, D., Elsaidi, S. K., Aguila, B., Li, B., Kim, D., Schweiger, M. J., Kruger, A. A., Doonan, C. J., Ma, S., Thallapally, P. K.: Removal of pertechnetate-related oxyanions from solution using functionalized hierarchical porous frameworks. Chem. Eur. J. 22, 17581 (2016).10.1002/chem.201603908Search in Google Scholar
47. Zengnian, S., Minghua, Y.: Adsorption of rhenium (VII) with anion exchange resin D318. Chin. J. Chem. Eng. 18, 372 (2010).10.1016/S1004-9541(10)60233-9Search in Google Scholar
48. Shu, X., Shen, L., Wei, Y., Hua, D.: Synthesis of surface ion-imprinted magnetic microsphere for efficient sorption of perrhenate: a structural surrogate for pertechnetate. J. Mol. Liq. 211, 621 (2015).10.1016/j.molliq.2015.07.059Search in Google Scholar
49. Jia, M., Cui, H., Jin, W., Zhu, L., Liu, Y., Chen, J.: Adsorption and separation of rhenium (VII) using N-methylimidazolium functionalized strong basic anion exchange resin. J. Chem. Technol. Biotechnol. 88, 437 (2013).10.1002/jctb.3904Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
- Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology
- Retardation of hexavalent uranium in muscovite environment: a batch study
- Zinc oxide impregnated resin for preconcentration and spectrophotometric determination of uranyl ions in aqueous solutions
- Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin
- Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent
- 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor
- Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey
- Letter to the Editor
- International Consensus Radiochemistry Nomenclature Guidelines
Articles in the same Issue
- Frontmatter
- Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
- Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology
- Retardation of hexavalent uranium in muscovite environment: a batch study
- Zinc oxide impregnated resin for preconcentration and spectrophotometric determination of uranyl ions in aqueous solutions
- Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin
- Effect of water chemistry on Eu(III) biosorption by magnetic bioadsorbent
- 99mTc-HYNIC-(Ser)3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor
- Radiometric measurement of lignite coal and its by-products and assessment of the usability of fly ash as raw materials in Turkey
- Letter to the Editor
- International Consensus Radiochemistry Nomenclature Guidelines