Home Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry
Article
Licensed
Unlicensed Requires Authentication

Fabrication of a flexible polycarbonate/porphyrin film dosimeter for high dose dosimetry

  • Shahzad Feizi EMAIL logo
Published/Copyright: March 7, 2017

Abstract

Dyed polycarbonate (PC) Radiochromic films with 20 μm thickness were prepared by casting of organic solution of PC containing 0.5 wt.% tetrakis (pentafluorophenyl) porphyrin (TPPF20) on a glass petri dish. Characterization of the film as a routine dosimeter was studied. On subjecting PC/TPPF20 film dosimeter to gamma radiation, a gradual decrease in the color of films was observed. The sensitivity of these films and the linearity of dose-response curves were studied under 60Co γ-rays expose in dose range of 0–100 kGy. The results were compared with the commercial and non-commercial dosimeters. Experimental parameters including humidity, temperature and pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight were examined. The maximum absorbance of soret band of TPPF20 had a bathochromic shift and appeared at 414 nm which remained intact in the investigated dose range. The dyed films characteristics were found to be stable enough in media with high degrees of temperature and humidity. The results indicate that radiation induced decoloration of PC/TPPF20 films can be reliably used in high dose dosimetry.

References

1. ISO/ASTM 51261.: American Society for Testing and Materials, PA, USA, West Conshohocken (2002).Search in Google Scholar

2. Kantz, A. D., Humpherys, K. C.: Quality assurance for radiation processing. Radiat. Phys. Chem. (1977) 14, 575 (1979).10.1016/0146-5724(79)90092-XSearch in Google Scholar

3. McLaughlin, W., Gaughran, E., Goudie, A.: Sterilization by ionizing radiation. Multiscience, Montreal, Quebec, 219 (1974).Search in Google Scholar

4. IAEA. “Dosimetry for food irradiation, Technical Reports Series Number 409,” (Austria, Vienna, 2002).Search in Google Scholar

5. Kovács, A., Baranyai, M., Wojnárovits, L., Slezsák, I., McLaughlin, W. L., Miller, A., Moussa, A.: Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light. Radiat. Phys. Chem. 57, 711 (2000).10.1016/S0969-806X(99)00501-0Search in Google Scholar

6. Bhatti, I. A., Adeel, S., Taj, H.: Application of Vat Green 1 dye on gamma ray treated cellulosic fabric. Radiat. Phys. Chem. 102, 124 (2014).10.1016/j.radphyschem.2014.04.015Search in Google Scholar

7. ISO/ASTM 51275.: American Society for Testing and Materials. PA, USA, West Conshohocken (2002).Search in Google Scholar

8. McLaughlin, W., Miller, A., Fidan, S., Pejtersen, K., Batsberg Pedersen, W.: Radiochromic plastic films for accurate measurement of radiation absorbed dose and dose distributions. Radiat. Phys. Chem. 10, 119 (1977).10.1016/0146-5724(77)90017-6Search in Google Scholar

9. Buenfil-Burgos, A., Uribe, R., De La Piedad, A., McLaughlin, W., Miller, A.: Thin plastic radiochromic dye films as ionizing radiation dosimeters. Radiat. Phys. Chem. (1977) 22, 325 (1983).10.1016/0146-5724(83)90037-7Search in Google Scholar

10. Miller, A., Batsberg, W., Karman, W.: A new radiochromic thin-film dosimeter system. Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 31, 491 (1988).10.1016/1359-0197(88)90216-0Search in Google Scholar

11. Frame, P. W.: A history of radiation detection instrumentation. Health Phys. 87, 111 (2004).10.1097/00004032-200408000-00001Search in Google Scholar

12. Mai, H. H., Solomon, H. M., Taguchi, M., Kojima, T.: Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters. Radiat. Phys. Chem. 77, 457 (2008).10.1016/j.radphyschem.2007.06.012Search in Google Scholar

13. ISO/ASTM 51650.: American Society for Testing and Materials, PA, USA, West Conshohocken (2002).Search in Google Scholar

14. McLaughlin, W. L., Ba, W.-Z., Chappas, W. J.: Cellulose diacetate film dosimeters. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 31, 481 (1988).10.1016/1359-0197(88)90215-9Search in Google Scholar

15. Tamura, N., Tanaka, R., Mitomo, S., Matsuda, K., Nagai, S.: Properties of cellulose triacetate dose meter. Radiat. Phys. Chem. 18, 947 (1981).10.1016/0146-5724(81)90285-5Search in Google Scholar

16. Chu, R., Lewis, D., O’Hara, K., Buckland, B., Dinelle, F., Van Dyk, G.: Gafchromic dosimetry media: A new high dose, thin film routine dosimeter and dose mapping tool. Radiat. Phys. Chem. 35, 767 (1990).10.1016/1359-0197(90)90313-7Search in Google Scholar

17. Khan, H. M., Ahmad, G., Sattar, A., Durrani, S.: Radiation dosimetry using clear PMMA and PVC in the range of 5–45 kGy. J. Radioanal. Nucl. Chem. 125, 127 (1988).10.1007/BF02041757Search in Google Scholar

18. Miller, A., Liqing, X.: Properties of commercial PVC films with respect to electron dosimetry. Risø National Laboratory (1985).Search in Google Scholar

19. Ilic-Popovic, J.: The Use of Pilyvinyl-Chloride Film for Electron Beam Dosimetry, (1966).Search in Google Scholar

20. Mai, H. H., Duong, N. D., Kojima, T.: Dyed polyvinyl chloride films for use as high-dose routine dosimeters in radiation processing. Radiat. Phys. Chem. 69, 439 (2004).10.1016/j.radphyschem.2003.08.006Search in Google Scholar

21. Kattan, M., al Kassiri, H., Daher, Y.: Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry. Applied Radiation and Isotopes 69, 377 (2011).10.1016/j.apradiso.2010.11.006Search in Google Scholar

22. Ueno, K.: Development of a plastic dosimeter for industrial use with high doses. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 31, 467 (1988).10.1016/1359-0197(88)90213-5Search in Google Scholar

23. Kattan, M., Daher, Y.: The use of polyvinyl chloride films dyed with methyl red in radiation dosimetry. Int. J. Radiat. Res. 14, 4 (2016).10.18869/acadpub.ijrr.14.3.263Search in Google Scholar

24. Khan, H. M., Ahmad, G.: Spectrophotometric analysis of blue polymethylmethacrylate as high-dose dosimeter. Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 35, 732 (1990).10.1016/1359-0197(90)90306-3Search in Google Scholar

25. Al Zahrany, A. A., Rabaeh, K. A., Basfar, A. A.: Radiation-induced color bleaching of methyl red in polyvinyl butyral film dosimeter. Radiat. Phys. Chem. 80, 1263 (2011).10.1016/j.radphyschem.2011.06.001Search in Google Scholar

26. Abdel-Fattah, A., Said, F., Ebraheem, S., El-Kelany, M., El Miligy, A.: Dyed acrylic-acid grafted polypropylene films for high-dose radiation dosimetry. Radiat. Phys. Chem. 54, 271 (1999).10.1016/S0969-806X(98)00259-XSearch in Google Scholar

27. Khan, H., Ahmad, G., Sattar, A.: Effects of humidity and light on dosimetric properties of clear polymethylmethacrylate. J. Radioanal. Nucl. Chem. 135, 237 (1989).10.1007/BF02164581Search in Google Scholar

28. Khan, H. M., Farahani, M., William L, M. A radiochromic folm dosimeter for gamma radiation in the absorbed-dose range 0.1–10 kGy. Int. J. Radiat. Appl. Instrum. C. Radiat. Phys. Chem. 38, 395 (1991).10.1016/1359-0197(91)90114-HSearch in Google Scholar

29. McLaughlin, W. L., Puhl, J. M., Miller, A.: Temperature and relative humidity dependence sof radiochromic film dosimeter response to gamma and electron radiation. Radiat. Phys. Chem. 46, 1227 (1995).10.1016/0969-806X(95)00359-6Search in Google Scholar

30. Ziaie, F., Tahami, S., Zareshahi, H., Lanjanian, H., Durrani, S.: Influence of environmental factors on some high dose dosimeter responses in Yazd Radiation Processing Center. Radiat. Meas. 43, S643 (2008).10.1016/j.radmeas.2008.04.032Search in Google Scholar

31. Smith, V. C., Richardson, T., Anderson, H. L.: Optical detection of chlorine gas using LB films of a zinc porphyrin dimer. Supramol. Sci. 4, 503 (1997).10.1016/S0968-5677(97)00035-7Search in Google Scholar

32. Leray, I., Vernières, M.-C., Loucif-Saibi, R., Bied-Charreton, C.: Porphyrins as probe molecules in the detection of gaseous pollutants I: diffusion of pyridine in polystyrene films containing zinc-tetraphenylporphyrin. Sens. Actuators B Chem. 37, 67 (1996).10.1016/S0925-4005(97)80073-1Search in Google Scholar

33. Masayuki, M., Hidenori, U., Shinzo, M.: Optical humidity sensor with a fast response time using dye-adsorbed langmuir-blodgett films. Jpn. J. Appl. Phys. 31, L1202 (1992).10.1143/JJAP.31.L1202Search in Google Scholar

34. Gewehr, P. M., Delpy, D. T.: Optical oxygen sensor based on phosphorescence lifetime quenching and employing a polymer immobilised metalloporphyrin probe. Med. Biol. Eng. Comput. 31, 2 (1993).10.1007/BF02446879Search in Google Scholar

35. Imahori, H., Kashiwagi, Y., Endo, Y., Hanada, T., Nishimura, Y., Yamazaki, I., Araki, Y., Ito, O., Fukuzumi, S.: Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20, 73 (2004).10.1021/la035435pSearch in Google Scholar

36. Delmarre, D., Bied-Charreton, C.: Grafting of cobalt porphyrins in sol–gel matrices: application to the detection of amines. Sens. Actuators B Chem. 62, 136 (2000).10.1016/S0925-4005(99)00383-4Search in Google Scholar

37. Fazaeli, Y., Feizi, S., Jalilian, A. R., Hejrani, A.: Grafting of [64Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent. Appl. Radiat. Isotopes 112, 13 (2016).10.1016/j.apradiso.2016.03.003Search in Google Scholar PubMed

38. Fazaeli, Y., Jalilian, A. R., Amini, M. M., Ardaneh, K., Rahiminejad, A., Bolourinovin, F., Moradkhani, S., Majdabadi, A.: Development of a 68Ga-fluorinated porphyrin complex as a possible PET imaging agent. Nucl. Med. Mol. Imaging 46, 20 (2012).10.1007/s13139-011-0109-5Search in Google Scholar PubMed PubMed Central

39. Fazaeli, Y., Jalilian, A. R., Feizi, S., Shadanpour, N.: Development of a radiothallium (III) labeld porphyrin complex as a potential imaging agent. Radiochimica Acta. 101, 795 (2013).10.1524/ract.2013.2092Search in Google Scholar

40. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J., Korsakoff, L.: A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 32, 476 (1967).10.1021/jo01288a053Search in Google Scholar

41. ASTM E1026-95. American Society for Testing and Materials, PA, USA, West Conshohocken (2003).Search in Google Scholar

42. Hunter, C. A., Sanders, J. K. M.: The nature of .pi.-.pi. interactions. J. Am. Chem. Soc. 112, 5525 (1990).10.1021/ja00170a016Search in Google Scholar

43. Feizi, S., Ziaie, F., Ghandi, M.: Using polycarbonate dyed with dansyl chloride for dosimetry in radiation processing. Radiochimica Acta. 103, 605 (2015).10.1515/ract-2015-0001Search in Google Scholar

44. ASTM E1707. (American Society for Testing and Materials, PA, USA, West Conshohocken (1995), vol. 100.Search in Google Scholar

45. Tjandraatmadja, G., Burn, L., Jollands, M.: Evaluation of commercial polycarbonate optical properties after QUV-A radiation – the role of humidity in photodegradation. Polym. Degrad. Stabil. 78, 435 (2002).10.1016/S0141-3910(02)00179-9Search in Google Scholar

Received: 2016-12-12
Accepted: 2017-1-23
Published Online: 2017-3-7
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2754/html
Scroll to top button