Abstract
In this study, a novel nanofiber material with gelatin/kaolin was developed with electrostatic spinning technology for rapid hemostasis. The performance of the materials was evaluated through physicochemical characterization, cytological experiments, and assessments of hemolysis and coagulation. The coagulation time of our material was significantly reduced to 60 s by incorporating nanokaolin. Furthermore, when thrombin was introduced, superfast hemostatic materials were created, resulting in coagulation within 5 s. Moreover, the material has good biocompatibility. The current material exhibits exceptional hemostatic properties and enhances wound healing and will be an effective hemostatic excipient in the future.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Jin Wang, Yuan Liu, Yanchen Gao, and Xing Zhang conceived and designed the study. Yuan Liu interpreted the data. Jin Wang, Yuan Liu, Yafang Liu, Yanchen Gao, and Xing Zhang prepared the manuscript. All the authors read and approved the final version of the manuscript for publication.
-
Use of Large Language Models, AI and Machine Learning Tools: None.
-
Conflict of interest: The authors declare that they have no competing financial interests.
-
Research funding: This work was supported by the Youth Program of Guangdong Provincial Hospital of Chinese Medicine (YN2023QN02).
-
Data availability: Data available on request from the authors.
References
1. Munz, C. M.; Dressel, N.; Chen, M.; Grinenko, T.; Roers, A.; Gerbaulet, A. Regeneration after Blood Loss and Acute Inflammation Proceeds without Contribution of Primitive HSCs. Blood 2023, 141 (20), 2483–2492; https://doi.org/10.1182/blood.2022018996.Search in Google Scholar PubMed
2. Liu, C.; Liu, C.; Shi, Z.; Yu, D.; Wang, X.; Liu, S.; Wang, X.; Huang, F. A Peptide-Engineered Alginate Aerogel with Synergistic Blood-Absorbing and Platelet-Binding Capabilities to Rapidly Stop Bleeding. Carbohydr. Polym. 2023, 321, https://doi.org/10.1016/j.carbpol.2023.121254.Search in Google Scholar PubMed
3. Fan, X.; Wang, S.; Fang, Y.; Li, P.; Zhou, W.; Wang, Z.; Chen, M.; Liu, H. Tough Polyacrylamide-Tannic Acid-Kaolin Adhesive Hydrogels for Quick Hemostatic Application. Biomater. Adv. 2020, 109, https://doi.org/10.1016/j.msec.2020.110649.Search in Google Scholar PubMed
4. He, H.; Sun, C.; Weng, Y.; Huang, H.; Ni, P.; Fang, Y.; Xu, R.; Wang, Z.; Liu, H. Catechol Modification of Non-woven Chitosan Gauze for Enhanced Hemostatic Efficacy. Carbohydr. Polym. 2022, 286, https://doi.org/10.1016/j.carbpol.2022.119319.Search in Google Scholar PubMed
5. Sun, X.; Li, N.; Su, C.; Mu, Y.; Cong, X.; Cao, Z.; Wang, X.; Yang, X.; Chen, X.; Feng, C. Diatom-Inspired Bionic Hydrophilic Polysaccharide Adhesive for Rapid Sealing Hemostasis. ACS Nano 2023, 17 (19), 19121–19135; https://doi.org/10.1021/acsnano.3c05205.Search in Google Scholar PubMed
6. Hui, C.; Gao, Y.; Yan, B.-Y.; Ding, L.-Q.; Sun, T.-C.; Liu, Z.; Ramakrishna, S.; Long, Y.-Z.; Zhang, J. Collocalia Birds Inspired Janus-Structured Bandage with Strong Wet Tissue Adhesion for Rapid Hemostasis and Wound Healing. Chem. Eng. J. 2023, 464, https://doi.org/10.1016/j.cej.2023.142458.Search in Google Scholar
7. Kanaujiya, S.; Arya, D. K.; Pandey, P.; Singh, S.; Pandey, G.; Anjum, S.; Anjum, M. M.; Ali, D.; Alarifi, S.; Mr, V.; Sivakumar, S.; Srivastava, S.; Rajinikanth, P. Resveratrol-Ampicillin Dual-Drug Loaded Polyvinylpyrrolidone/Polyvinyl Alcohol Biomimic Electrospun Nanofiber Enriched with Collagen for Efficient Burn Wound Repair. Int. J. Nanomed. 2024, 2024:19, 5397–5418; https://doi.org/10.2147/ijn.s464046.Search in Google Scholar PubMed PubMed Central
8. Mele, E. Electrospinning of Honey and Propolis for Wound Care. Biotechnol. Bioeng. 2023, 120 (5), 1229–1240; https://doi.org/10.1002/bit.28341.Search in Google Scholar PubMed
9. Wu, J.; Yu, F.; Shao, M.; Zhang, T.; Lu, W.; Chen, X.; Wang, Y.; Guo, Y. Electrospun Nanofiber Scaffold for Skin Tissue Engineering: A Review. ACS Appl. Bio Mater. 2024, 7 (6), 3556–3567; https://doi.org/10.1021/acsabm.4c00318.Search in Google Scholar PubMed
10. Zhang, M.; Xu, S.; Wang, R.; Che, Y.; Han, C.; Feng, W.; Wang, C.; Zhao, W. Electrospun Nanofiber/Hydrogel Composite Materials and Their Tissue Engineering Applications. J. Mater. Sci. Technol. 2023, 162, 157–178; https://doi.org/10.1016/j.jmst.2023.04.015.Search in Google Scholar
11. Yuan, X.; Zhu, Z.; Xia, P.; Wang, Z.; Zhao, X.; Jiang, X.; Wang, T.; Gao, Q.; Xu, J.; Shan, D.; Guo, B.; Yao, Q.; He, Y. Tough Gelatin Hydrogel for Tissue Engineering. Adv. Sci. 2023, 10 (24), https://doi.org/10.1002/advs.202301665.Search in Google Scholar PubMed PubMed Central
12. Yajun, Z.; Ming, L.; Jing, C.; Chang, L.; Yuwen, H.; Yanhua, W.; Weiguo, X. Silk Fibroin–Gelatine Haemostatic Sponge Loaded with Thrombin for Wound Haemostasis and Tissue Regeneration. Burns Trauma 2024, 12, https://doi.org/10.1093/burnst/tkae026.Search in Google Scholar PubMed PubMed Central
13. Li, W.; Xu, K.; Liu, Y.; Lei, X.; Ru, X.; Guo, P.; Feng, H.; Chen, Y.; Xing, M. Hydrophobic Polystyrene-Modified Gelatin Enhances Fast Hemostasis and Tissue Regeneration in Traumatic Brain Injury. Adv. Healthcare Mater. 2023, 12 (30), https://doi.org/10.1002/adhm.202300708.Search in Google Scholar PubMed PubMed Central
14. Asim, S.; Tabish, T. A.; Liaqat, U.; Ozbolat, I. T.; Rizwan, M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv. Healthcare Mater. 2023, 12 (17), https://doi.org/10.1002/adhm.202203148.Search in Google Scholar PubMed PubMed Central
15. Bhattacharyya, A.; Ham, H.-W.; Sonh, J.; Gunbayar, M.; Jeffy, R.; Nagarajan, R.; Khatun, M. R.; Noh, I. 3D Bioprinting of Complex Tissue Scaffolds with In Situ Homogeneously Mixed Alginate-Chitosan-Kaolin Bioink Using Advanced Portable Biopen. Carbohydr. Polym. 2023, 317, https://doi.org/10.1016/j.carbpol.2023.121046.Search in Google Scholar PubMed
16. Gribkova, I. V.; Galstyan, G. M.; Polyanskaya, T. Y.; Sinauridze, E. I. Kaolin, Used to Trigger Coagulation in Thrombin Generation Test, Increases Sensitivity of the Method in Hemophilia Patients. Blood Coagul Fibrinolysis 2020, 31 (3), 193–197; https://doi.org/10.1097/mbc.0000000000000898.Search in Google Scholar PubMed
17. Awad, M. E.; López-Galindo, A.; El-Rahmany, M. M.; El-Desoky, H. M.; Viseras, C. Characterization of Egyptian Kaolins for Health-Care Uses. Appl. Clay Sci. 2017, 135, 176–189; https://doi.org/10.1016/j.clay.2016.09.018.Search in Google Scholar
18. Dong, R.; Zhang, H.; Guo, B. Emerging Hemostatic Materials for Non-compressible Hemorrhage Control. Natl. Sci. Rev. 2022, 9 (11), https://doi.org/10.1093/nsr/nwac162.Search in Google Scholar PubMed PubMed Central
19. Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic Materials for Wound Healing Applications. Nat. Rev. Chem. 2021, 5, 773–791; https://doi.org/10.1038/s41570-021-00323-z.Search in Google Scholar PubMed
20. Yang, Y.; Du, Y.; Zhang, J.; Zhang, H.; Guo, B. Structural and Functional Design of Electrospun Nanofibers for Hemostasis and Wound Healing. Adv. Fiber Mater. 2022, 4, 1027–1057; https://doi.org/10.1007/s42765-022-00178-z.Search in Google Scholar
21. El-Mehalawy, N.; Sayed, M.; Abou El-Anwar, E. A.; Soliman, A. A. F.; Naga, S. M. Preparation and Characterization of Bioceramic Composites Based on Anorthite and β-TCP from Dolomitic Phosphate and Kaolin Rocks. Mater. Chem. Phys. 2023, 312, https://doi.org/10.1016/j.matchemphys.2023.128625.Search in Google Scholar
22. Contardi, M.; Kossyvaki, D.; Picone, P.; Summa, M.; Guo, X.; Heredia-Guerrero, J. A.; Giacomazza, D.; Carzino, R.; Goldoni, L.; Scoponi, G.; Rancan, F.; Bertorelli, R.; Di Carlo, M.; Athanassiou, A.; Bayer, I. S. Electrospun Polyvinylpyrrolidone (PVP) Hydrogels Containing Hydroxycinnamic Acid Derivatives as Potential Wound Dressings. Chem. Eng. J. 2020, 409, https://doi.org/10.1016/j.cej.2020.128144.Search in Google Scholar
23. Contardi, M.; Russo, D.; Suarato, G.; Heredia-Guerrero, J. A.; Ceseracciu, L.; Penna, I.; Margaroli, N.; Summa, M.; Spanò, R.; Tassistro, G.; Vezzulli, L.; Bandiera, T.; Bertorelli, R.; Athanassiou, A.; Bayer, I. S. Polyvinylpyrrolidone/Hyaluronic Acid-Based Bilayer Constructs for Sequential Delivery of Cutaneous Antiseptic and Antibiotic. Chem. Eng. J. 2018, 358, 912–923, https://doi.org/10.1016/j.cej.2018.10.048.Search in Google Scholar
24. Yirong, Z.; Shuo, Y.; Zhengtao, T.; Zeqi, H.; Shuhan, X.; Vincent, M.; Ziyi, T.; Kangkang, Z.; Lefeng, Q.; Hongjing, D. A Platelet-Substitute-Releasing Supramolecular Material for Cellular Assembly Mediated On-Demand Hemostasis. Adv. Funct. Mater. 2025, https://doi.org/10.1002/adfm.202422686.Search in Google Scholar
25. Mehdi, A.; Mostafa, A.; Razieh, G.; Javid, A.; Zahra, B.; Shayan, H.; Ali, A.; Elham, G.; Hadi, Z.; Mohammad, R. Zinc Oxide Nanoparticle-Embedded Tannic Acid/chitosan-Based Sponge: A Highly Absorbent Hemostatic Agent with Enhanced Antimicrobial Activity. Int. J. Biol. Macromol. 2025, 300, https://doi.org/10.1016/j.ijbiomac.2025.140337.Search in Google Scholar PubMed
26. Yang, L.; Yinfeng, T.; Huange, Z.; Shiting, C.; Azadeh, N.; Rong, C.; Songlin, Z. Green Biosynthetic Silver Nanoparticles from Ageratum Conyzoides as Multifunctional Hemostatic Agents: Combining Hemostasis, Antibacterial, and Anti-inflammatory Properties for Effective Wound Healing. Mater. Today Bio. 2025, 31, https://doi.org/10.1016/j.mtbio.2025.101468.Search in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)
- A novel double-layer nanofiber with gelatin–kaolin/polyvinylpyrrolidone–thrombin for rapid homeostasis
- Preparation and Assembly
- Preparation of ER/NR foamed composites with adjustable shape memory and oil adsorption properties
- Emerging trends in cryogelation: key factors influencing cryotropic gelation processes
- Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation
- A feasible chemo preventive approach involves the use of zinc-coated curcumin with a carrageenan matrix for improved stability, solubility, and bioavailability
- Engineering and Processing
- Controlling surface morphology of spin coated epoxy composites using the Marangoni instability
Articles in the same Issue
- Frontmatter
- Material Properties
- N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)
- A novel double-layer nanofiber with gelatin–kaolin/polyvinylpyrrolidone–thrombin for rapid homeostasis
- Preparation and Assembly
- Preparation of ER/NR foamed composites with adjustable shape memory and oil adsorption properties
- Emerging trends in cryogelation: key factors influencing cryotropic gelation processes
- Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation
- A feasible chemo preventive approach involves the use of zinc-coated curcumin with a carrageenan matrix for improved stability, solubility, and bioavailability
- Engineering and Processing
- Controlling surface morphology of spin coated epoxy composites using the Marangoni instability