Abstract
The objective of this study is to replace sodium alginate (bio composite polymer), urea and sodium bicarbonate (alkalinity) in the conventional reactive printing of cotton with carboxymethyl tamarind plolysaccharide (bio polymer), polyethylene glycol 400 (PEG-400) and trichloroacetic acid respectively. This study was motivated by the goal of coming up with a low-cost, eco-friendly printing process. The results were evaluated on two reactive dyes (color index numbers: Reactive Violet 01 and Reactive Blue 21) at two dose levels (2% and 4% of the printing paste weight). In the conventional recipe, sodium alginate, urea and sodium bicarbonate were added at dose levels of 2%, 15% and 2.5%, respectively; in the modified recipe, the dose levels of the substituted tamarind polysaccharide and trichloroacetic acid were 6% and 4%, respectively. The different dose levels of PEG-400 (0%, 1%, 2%, 3%) were accessed in each modified recipe. Results showed that the Sum K/S and shade strength, dye penetration, staining on white ground of the fabric, rubbing fastness (dry and wet), washing fastness, perspiration fastness (acidic and alkaline), light fastness, sharpness of the edges and fabric softness all improved in the modified recipe with 2% PEG-400. However, the increase in PEG-400 only increased the dye penetration and did not give any significant benefit with the increase in concentration.
Abbreviations
- Couracid BN
neutralizing acid buffering agent
- Couraperse WE
soaping/washing off the agent
- Courasoft QE
fatty acid amide softener
- MCT
monochlolrotriazine
- ME Conc
Courasil ME Conc (40% active silicone micro emulsion)
- PEG-400
polyethylene glycol 400
- VS
vinyl sulphone
Funding: The authors wish to thank the M/S Coural Associates Pakistan for financing this research work under grant # 20160215.
References
[1] Delhaes P. Fibers and Composites, Taylor and Francis: UK, 2003.10.4324/9780203166789Search in Google Scholar
[2] Gong H, Liu M, Zhang B, Cui D, Gao C, Ni B, Chen J. Int. J. Biol. Macromol. 2011, 49, 1083–1091.10.1016/j.ijbiomac.2011.09.004Search in Google Scholar PubMed
[3] Goyal P, Kumar V, Sharma P. Carbohydr. Polym. 2007, 69, 251–255.10.1016/j.carbpol.2006.10.001Search in Google Scholar
[4] Stojanović Z, Jeremić K, Jovanović S, Lechner MD. Starch/Stärke 2005, 57, 79–83.10.1002/star.200400342Search in Google Scholar
[5] Broadbent AD, Ed., Basic Principles of Textile Coloration, DC: UK, 2001.Search in Google Scholar
[6] Abdou ES, El-Hennawi HM, Ahmed KA. J. Chem. 2013, 2013, Article ID: 595810, 1–8. 10.1155/2013/595810Search in Google Scholar
[7] Zhang H, Gao A, Song X, Hau A. J. Clean. Prod. 2016, 124, 126–131.10.1016/j.jclepro.2016.02.090Search in Google Scholar
[8] Fijan R, Basile M, Lapasin R, Sostarturk S. Carbohydr. Polym. 2009, 78, 25–35.10.1016/j.carbpol.2009.03.022Search in Google Scholar
[9] Madhu CR, Patel DMC. Int. Res. J. Eng. Technol. 2016, 3, 1418–1420.Search in Google Scholar
[10] Lee KY, Mooney DJ. Prog. Polym. Sci. 2012, 37, 106–126.10.1016/j.progpolymsci.2011.06.003Search in Google Scholar PubMed PubMed Central
[11] Kumar CS, Bhattacharya S. Crit. Rev. Food Sci. Nutr. 2008, 48, 1–8.10.1080/10408390600948600Search in Google Scholar PubMed
[12] Kaur H, Ahuja M, Kumar S, Dilbaghi N. Int. J. Biol. Macromol. 2012, 50, 833–839.10.1016/j.ijbiomac.2011.11.017Search in Google Scholar PubMed
[13] Sharma M, Mondal D, Mukesh C, Prasad K. Carbohydr. Polym. 2014, 102, 467–471.10.1016/j.carbpol.2013.11.063Search in Google Scholar PubMed
[14] Pal S, Sen G, Mishra S, Dey RK, Jha U. J. Appl. Polym. Sci. 2008, 110, 392–400.10.1002/app.28455Search in Google Scholar
[15] Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda AB. Ind. Eng. Chem. Res. 2012, 51, 15546–15556.10.1021/ie301134aSearch in Google Scholar
[16] Parija S, Misra M, Mohanty AK. J. Macromol. Sci. Polym. Rev. 2001, 41, 175–197.10.1081/MC-100107775Search in Google Scholar
[17] Shaikh SS, Shivsharan KJ, Pawar RK, Misal NS, Mene HR, More BA. Int. J. Pharm. Sci. Rev. Res. 2015, 33, 157–164.Search in Google Scholar
[18] Sanyasi S, Kumar A, Goswami C, Bandyopadhyay A, Goswami L. Carbohydr. Polym. 2014, 101, 1033–1042.10.1016/j.carbpol.2013.10.047Search in Google Scholar PubMed
[19] Tepparin S, Saebe P, Suesat J, Chumrun S, Hongmeng W. Int. J. Biosci. Biochem. Bioinform. 2012, 2, 159–163.10.7763/IJBBB.2012.V2.92Search in Google Scholar
[20] Zhang J, Xu S, Zhang S, Du Z. Iran. Polym. J. 2008, 17, 899–906.Search in Google Scholar
[21] Goyal P, Kumar V, Sharma P. Starch/Stärke 2008, 60, 41–47.10.1002/star.200700609Search in Google Scholar
[22] Khounvilay K, Sittikijyothin W. Food Hydrocolloids 2012, 26, 334–338.10.1016/j.foodhyd.2011.03.019Search in Google Scholar
[23] Gupta V, Puri R, Gupta S, Jain S, Rao G. Syst. Rev. Pharm. 2010, 1, 50–55.10.4103/0975-8453.59512Search in Google Scholar
[24] Wang L, Li R, Shao J, Wang Z. J. Appl. Polym. Sci. 2017, 134, 45001–45007.10.1002/app.45525Search in Google Scholar
[25] Wang L, Li R, Wang C, Shao J, Wu M, Wang W. Cellulose 2017, 24, 3545–3554.10.1007/s10570-017-1346-2Search in Google Scholar
[26] Ding C, Wang L, Lin J, Ni D. Adv. Mater. Res. 2011, 175–176, 691–695.10.4028/www.scientific.net/AMR.175-176.691Search in Google Scholar
[27] Ahmed NSE, Youssef YA, Reda ME, Mousa AA. Color. Technol. 2006, 122, 324–328.10.1111/j.1478-4408.2006.00047.xSearch in Google Scholar
[28] Bechtold T, Mussak R, Eds., Handbook of Natural Colorants, JWS Ltd: UK, 2009.10.1002/9780470744970Search in Google Scholar
[29] Wang L, Yan K, Hu C. J. Clean. Prod. 2016, 16, 32044–32053.Search in Google Scholar
[30] Hamasky WHE, Tawfeek S, Ibrahim DF, Maamoun D, Gaber S. Color. Technol. 2007, 123, 365–373.10.1111/j.1478-4408.2007.00106.xSearch in Google Scholar
[31] McDonald R, Ed., Colour Physics for Industry, Society of Dyers and Colourists: UK, 1997.Search in Google Scholar
[32] Madaras GW, Parish GJ, Shore J, Eds., Batch Wise Dyeing of Woven Cellulosic Fabric, Society of Dyers and Colourists: UK, 1993.Search in Google Scholar
[33] Hunterlab. The Kubelka-Monk Theory and K/S, Applications Note. Hunter Associates Laboratory Inc.: Virginia 18, 2008. www.hunterlab.com.Search in Google Scholar
[34] McGuire RG. Hort. Sci. 1992, 27, 1254–1255.10.21273/HORTSCI.27.12.1254Search in Google Scholar
[35] Ansorena D, Pefia MPD, Astiasarhn I, Bello J. Meal Sci. 1997, 46, 313–318.10.1016/S0309-1740(97)00025-9Search in Google Scholar
[36] Mclaren K. J. Soc. Dyers Colourists. 1976, 92, 338–341.10.1111/j.1478-4408.1976.tb03301.xSearch in Google Scholar
[37] Xie K, Gao A, Li M, Wang X. Carbohydr. Polym. 2014, 101, 666–670.10.1016/j.carbpol.2013.09.107Search in Google Scholar PubMed
[38] BS EN ISO 105-X12: Colour Fastness to Rubbing. 2002, British Standards.Search in Google Scholar
[39] BS EN ISO 105-C03: Colour Fastness to Washing-Test 3. 1993, British Standards.Search in Google Scholar
[40] BS EN ISO 105-B02: Colour Fastness to Artificial Light: Xenon Arc Fading Lamp Test. 1999, British Standards.Search in Google Scholar
[41] BS EN ISO 105-E04: Colour Fastness to Perspiration. 1996, British Standards.Search in Google Scholar
[42] Ponnikornkit P, Ngamsalak C, Huanbutta K, Sittikijyothin W. Adv. Mater. Res. 2014, 1060, 137–140.10.4028/www.scientific.net/AMR.1060.137Search in Google Scholar
[43] Zollinger H, Ed., Diazo Chemistry II, Wiley VCH: Germany, 1995.10.1002/3527601732Search in Google Scholar
[44] Zhang B, Gong H, Lu S, Ni B, Liu M, Gao C, Huang Y, Han F. Int. J. Biol. Macromol. 2012, 51, 668–674.10.1016/j.ijbiomac.2012.07.003Search in Google Scholar PubMed
[45] Lotito AM, Fratino U, Bergna G, Iaconi CD. Chem. Eng. J. 2012, 195–196, 261–269.10.1016/j.cej.2012.05.006Search in Google Scholar
[46] Shahidullah M, Ahmed HU, Uddin MM, Halim A, Anwer MM. J. Soil. Nat. 2008, 2, 5–8.Search in Google Scholar
[47] Li J, He J, Huang Y. Int. J. Biol. Macromol. 2017, 94, 466–473.10.1016/j.ijbiomac.2016.10.054Search in Google Scholar
[48] Ibrahim NA, Eid BM, Khalil HM. Carbohydr. Polym. 2015, 115, 559–567.10.1016/j.carbpol.2014.09.013Search in Google Scholar
[49] Kumbasar EPA, Bide M. Dyes Pigments 2000, 47, 189–199.10.1016/S0143-7208(00)00075-9Search in Google Scholar
[50] Abushosha MH, Ibrahim NA, Allam E, Elzairy E. Carbohydr. Polym. 2008, 74, 241–249.10.1016/j.carbpol.2008.02.011Search in Google Scholar
[51] Elmolla MM, Elsayad HS. Adv. Polym. Technol. 2001, 20, 58–71.10.1002/1098-2329(200121)20:1<58::AID-ADV1004>3.0.CO;2-3Search in Google Scholar
[52] Fijan R, Sostarturk S, Lapasin R. Carbohydr. Polym. 2007, 68, 708–717.10.1016/j.carbpol.2006.08.006Search in Google Scholar
[53] Fijan R, Basile M, Sostarturk S, Zagar E, Zigon M, Lapasin R. Carbohydr. Polym. 2009, 76, 8–16.10.1016/j.carbpol.2008.09.027Search in Google Scholar
[54] Li M, Zhang K, Xie K. Carbohydr. Polym. 2014, 113, 77–82.10.1016/j.carbpol.2014.07.006Search in Google Scholar
[55] Liu Z, Fang K, Gao H, Liu X, Zhang J. Color. Technol. 2016, 132, 1–7.10.1111/cote.12232Search in Google Scholar
[56] Tepparin S, Saebe P, Suesat J, Chumrun S. Adv. Mater. Res. 2011, 233–235, 1388–1391.10.4028/www.scientific.net/AMR.233-235.1388Search in Google Scholar
[57] Prabhanjan H, Ali SZ. Carbohydr. Polym. 1995, 28, 245–253.10.1016/0144-8617(95)00106-9Search in Google Scholar
[58] Ragheb AA, Nassar SH, Elthalouth IA, Ibrahim NA, Shahin AA. Carbohydr. Polym. 2012, 89, 1044–1049.10.1016/j.carbpol.2012.03.054Search in Google Scholar PubMed
[59] Gong H, Liu M, Chen J, Han F, Gao C, Zhang B. Carbohydr Polym. 2012, 88, 1015–1022.10.1016/j.carbpol.2012.01.057Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Banana and plantain fiber-reinforced polymer composites
- Characterizations of PMMA-based polymer electrolyte membranes with Al2O3
- Effects of grafting parameters on the properties of proton exchange membranes based on sulfo-functionalized porous silicon for micro direct methanol fuel cells
- The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+
- Characterization of organic solar cells using semiconducting polymers with different bandgaps
- Hindered phenol-mediated damping of polyacrylate rubber: effect of hydrogen bonding strength on the damping properties
- Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials
- Preparation and assembly
- Replacement of sodium alginate polymer, urea and sodium bicarbonate in the conventional reactive printing of cellulosic cotton
- Carboxylic acid modified pH-responsive composite polymer particles
- Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties
Articles in the same Issue
- Frontmatter
- Material properties
- Banana and plantain fiber-reinforced polymer composites
- Characterizations of PMMA-based polymer electrolyte membranes with Al2O3
- Effects of grafting parameters on the properties of proton exchange membranes based on sulfo-functionalized porous silicon for micro direct methanol fuel cells
- The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+
- Characterization of organic solar cells using semiconducting polymers with different bandgaps
- Hindered phenol-mediated damping of polyacrylate rubber: effect of hydrogen bonding strength on the damping properties
- Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials
- Preparation and assembly
- Replacement of sodium alginate polymer, urea and sodium bicarbonate in the conventional reactive printing of cellulosic cotton
- Carboxylic acid modified pH-responsive composite polymer particles
- Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties