Abstract
Polyacrylamide was produced through redox polymerization in a single batch reactor. Ammonium persulfate and sodium bisulfite were applied as the redox initiators. Statistical design consisting a 24 full factorial design was used to determine the dependence of the factors such as temperature, concentrations of acrylamide, ammonium persulfate and sodium bisulfite, as well as their interactions in affecting the initial rate of polyacrylamide redox polymerization. All independent factors were shown to have a significant effect on the rate of polyacrylamide redox polymerization. The order of significance was: temperature>ammonium persulfate>acrylamide>sodium bisulfite. The interactive effects of the factors were also investigated. The 24 ull factorial design was augmented to central composite design (CCD), to optimize the rate of polyacrylamide redox polymerization. The results showed that a high rate of polyacrylamide redox polymerization occurred at a high level of the factors. A statistical design kinetics model was constructed through second-order regression to predict the rate of polyacrylamide redox polymerization and the R2 value was 0.9888, which fitted the experimental rate of polyacrylamide redox polymerization better compared to the classical kinetics model.
©2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites