Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites
Abstract
This work evaluates the influence of a radiopaque reinforcement, barium sulfate (BaSO4), on the mechanical, rheological and thermal properties of polyoxymethylene (POM). Nanocomposites of POM containing spherical nanoparticles of BaSO4 (0, 1, 2, 3 phr) were obtained by melt extrusion in a twin-screw equipment followed by injection molding. The mechanical, thermal and rheological properties of these nanocomposites and the dispersion state of the particles were investigated. Scanning and transmission electron microscopy revealed the morphology of the products. The main objective of this work is the production of nanocomposites with sulfate concentration enough to acquire radiopaque properties while maintaining the mechanical properties of the matrix. In this regard, mechanical and rheological properties were found similar to those of the polymer matrix, but radiopaque contrast tests revealed the influence of the nanoparticles concentration on the optical properties of the composites. The production of these nanocomposites suggests potential applications in the biomedical sector given their unique radio-opacity properties.
©2012 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites
Articles in the same Issue
- Masthead
- Masthead
- Masthead
- Original Articles
- Evaluation of factors and kinetics study of polyacrylamide redox polymerization using statistical design modeling
- Gel filtration chromatography analysis and modeling the process of pullulan depolymerization
- Polystyrene–organoclay nanocomposites produced by in situ activators regenerated by electron transfer for atom transfer radical polymerization
- Viscoelasticity in thermoforming
- Melt extrudate swell behavior of polypropylene composites filled with hollow glass beads
- Viscosity and domain morphology in binary immiscible blends of poly(trimethylene terephthalate) and polyamide6,10
- Effect of poly (methyl methacrylate)-grafted-talc content on mechanical properties and thermal degradation of poly (vinyl chloride) composites
- Fabrication and properties of poly(L-lactide)/hydroxyapatite/chitosan fiber ternary composite scaffolds for bone tissue engineering
- Green composites based on recycled polyamide-6/recycled polypropylene kenaf composites: mechanical, thermal and morphological properties
- Effect of gamma radiation and bulk monomer on jute fabrics polyethylene/polyvinyl chloride composites
- Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles
- Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological properties of polyoxymethylene nanocomposites