Home Microstructural characterization of 15Cr steel after quenching and slow cooling rates
Article
Licensed
Unlicensed Requires Authentication

Microstructural characterization of 15Cr steel after quenching and slow cooling rates

  • M. R. Ahmadi , F. Meixner

    Felix Meixner (1990) is studying Mechanical Engineering and Business Economics at Graz University of Technology. He has been working at the Institute of Materials Science since 2020 as a project assistant in the field of high temperature creep and materials for thermal energy power plants.

    , M. Dománková , M. Raus , B. Sonderegger and C. Sommitsch EMAIL logo
Published/Copyright: January 25, 2024
Become an author with De Gruyter Brill

Abstract

Ferritic 15 %-Cr steels have better oxidation resistance, due to their higher chromium content, and creep strength, their lower dislocation density and lack of lath microstructure than conventional martensitic steels such as MarBN. Their mechanical properties are sensitive to chemical composition and heat treatment. In this study, we first simulated the formation of stable phases in two ferritic steels containing 2 % nickel (wt.%) and an alloy without nickel using the thermomechanical software MATCALC. Microstructural analysis using scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) reveals the formation of carbides and intermetallic phases after diffusion annealing, both during rapid cooling in oil and slow cooling in the furnace. Dilatometry and XRD studies confirm the gradual phase transformation of ferrite to austenite from 650 °C onwards during heating. Dilatometry also shows that ferritic steels have a lower coefficient of thermal expansion than martensitic steels, austenitic steels, and superalloys, which results in lower thermal stresses during frequent start-up and shutdown of power plants.

Kurzfassung

Ferritische Stähle, die 15 % Cr enthalten, weisen im Vergleich zu konventionellen martensitischen Stählen, wie z. B. MarBN, aufgrund ihres höheren Chromgehalts, der höheren Kriechbeständigkeit, der geringeren Versetzungsdichte und dem Nichtvorhandensein einer lattenförmig ausgebildeten Mikrostruktur eine bessere Oxidationsbeständigkeit auf. Ihre mechanischen Eigenschaften reagieren empfindlich auf Änderungen in der chemischen Zusammensetzung und Wärmebehandlungen. Für die vorliegende Arbeit wurde zunächst mit Hilfe der thermomechanischen Software MATCALC die Bildung stabiler Phasen in zwei ferritischen Stählen simuliert, davon eine Legierung mit 2 % Nickel (Gew.-%) und eine Legierung ohne Nickel. Die Analyse der Mikrostruktur mittels Rasterelektronenmikroskopie (REM) und energiedispersiver Röntgenspektroskopie (EDX) belegt die Bildung von Karbiden und intermetallischen Phasen nach dem Diffusionsglühen, sowohl bei schneller Abkühlung in Öl als auch bei langsamer Abkühlung im Ofen. Mit Hilfe der Dilatometrie und XRD-Untersuchungen wurde die schrittweise Phasenumwandlung von Ferrit in Austenit ab einer Temperatur von 650 °C während der Aufheizung bestätigt. Die Dilatometrie zeigt zudem, dass ferritische Stähle einen niedrigeren Wärmeausdehnungskoeffizienten haben als martensitische Stähle, austenitische Stähle und Superlegierungen, was zu einer niedrigeren thermischen Belastung beim häufigen Anfahren und Abschalten von Kraftwerken führt.

About the author

F. Meixner

Felix Meixner (1990) is studying Mechanical Engineering and Business Economics at Graz University of Technology. He has been working at the Institute of Materials Science since 2020 as a project assistant in the field of high temperature creep and materials for thermal energy power plants.

Danksagung

Die Autoren danken voestalpine BÖHLER Edelstahl GmbH & Co KG für die Herstellung der Legierungen und die maschinelle Fertigung der Proben, besonders Günter Zeiler und Rainer Fluch für die Koordination des Transports. Die Autoren bedanken sich ebenfalls bei Susanne Baumgartner und Jörg Steiner für deren wertvollen Input.

Die vorliegende Arbeit wurde im Rahmen des COMET-Programms im COMET K2-Zentrum für “Integrated Computational Material, Process and Product Engineering (IC-MPPE) (P2.4)”

Acknowledgements

The authors thank voestalpine BÖHLER Edelstahl GmbH & Co KG for producing the alloys and machining the samples, and especially Günter Zeiler and Rainer Fluch for coordinating their transportation. We also thank Susanne Baumgartner and Jörg Steiner for their valuable input.

The authors carried out this work as part of the COMET program within the COMET K2 Center “Integrated Computational Material, Process and Product Engineering (IC-MPPE) (P2.4)”

References / Literatur

[1] Shibuya, M.; Toda, Y.; Sawada, K.; Kushima, H.; Kimura, K.: Improving the high-temperature creep strength of 15Cr ferritic creep-resistant steels at temperatures of 923-1023K, Mater. Sci. Eng. A. 652 (2016), pp. 1–6. DOI: 10.1016/j.msea.2015.11.06810.1016/j.msea.2015.11.068Search in Google Scholar

[2] Shibuya, M.; Toda, Y.; Sawada, K.; Kushima, H.; Kimura, K.: Effect of precipitation behavior on creep strength of 15%Cr ferritic steels at high temperature between 923 and 1023K, Mater. Sci. Eng. A. 592 (2014), pp. 1–5. DOI: 10.1016/j.msea.2013.10.08510.1016/j.msea.2013.10.085Search in Google Scholar

[3] Fry, A. T.; Aguero, A.: Steam Oxidation and the Evaluation of Coatings and Material Performance through Collaborative Research, in: 9th Liège Conf. Mater. Adv. Power Eng., Liège, Belgium (2010), p. 935. DOI: 10.13140/2.1.3359.9044.10.13140/2.1.3359.9044Search in Google Scholar

[4] Di Gianfrancesco, A.: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Elsevier, 2017. DOI: 10.1016/C2014-0-04826-510.1016/C2014-0-04826-5Search in Google Scholar

[5] Masuyama, F.: History of power plants and progress in heat resistant steels, ISIJ Int. 41 (2001), pp. 612–625. DOI: 10.2355/isijinternational.41.61210.2355/isijinternational.41.612Search in Google Scholar

[6] Abe, F.; Araki, H.; Noda, T.: Effect of microstructural evolution in bainite, martensite, and δ ferrite on toughness of Cr–2W steels, Mater. Sci. Technol. 8 (1992), pp. 763–773. DOI: 10.1179/mst.1992.8.9.76310.1179/mst.1992.8.9.763Search in Google Scholar

[7] Kimura, K.; Seki, K.; Toda, Y.; Abe, F.: Development of high strength 15Cr ferritic creep resistant steel with addition of tungsten and cobalt, ISIJ Int. 41 (2001), pp. 121–125. DOI: 10.2355/isijinternational.41.suppl_s12110.2355/isijinternational.41.suppl_s121Search in Google Scholar

[8] Toda, Y.; Seki, K.; Kimura, K.; Abe, F.: Effects of W and Co on long-term creep strength of precipitation strengthened 15Cr ferritic heat resistant steels, ISIJ Int. 43 (2003), pp. 112–118. DOI: 10.2355/isijinternational.43.11210.2355/isijinternational.43.112Search in Google Scholar

[9] Toda, Y.; Tohyama, H.; Kushima, H.; Kimura, K.; Abe, F.: Influence of Chemical Composition Heat Treatment Condition on Impact Toughness, JSME Int. J. 48 (2005), pp. 125–131. http://ci.nii.ac.jp/lognavi?name=nels%7B&%7Dlang=en%7B&%7Dtype=pdf%7B&%7Did=ART0007568836%5Cnhttps://drive.google.com/open?id=0B0fTxDBXtHZMYnI2bkhZU1c5MjASearch in Google Scholar

[10] Kimura, K.; Toda, Y.; Kushima, H.; Sawada, K.: Creep strength of high chromium steel with ferrite matrix, Int. J. Press. Vessel. Pip. 87 (2010), pp. 282–288. DOI: 10.1016/j.ijpvp.2010.03.01610.1016/j.ijpvp.2010.03.016Search in Google Scholar

[11] Shibuya, M.; Toda, Y.; Sawada, K.; x Kushima, K.; Kimura, K.: Effect of nickel and cobalt addition on the precipitation-strength of 15Cr ferritic steels, Mater. Sci. Eng. A. 528 (2011), pp. 5387–5393. DOI: 10.1016/j.msea.2011.03.08810.1016/j.msea.2011.03.088Search in Google Scholar

[12] Kuhn, B.; Talik, M.; Niewolak, L.; Zurek, J.; Hattendorf, H.; Ennis, P. J.; Quadakkers, W. J.; Beck, T.; x Singheiser, T.: Development of high chromium ferritic steels strengthened by intermetallic phases, Mater. Sci. Eng. A. 594 (2014), pp. 372–380. DOI: 10.1016/j.msea.2013.11.04810.1016/j.msea.2013.11.048Search in Google Scholar

[13] Kaibyshev, R.; Mishnev, R.; Tkachev, E.; Dudova, N.: Effect of Ni and Mn on the Creep Behaviour of 9–10 %Cr Steels with Low N and High B, Trans. Indian Inst. Met. 69 (2016), pp. 203–210. DOI: 10.1007/s12666-015-0761-z10.1007/s12666-015-0761-zSearch in Google Scholar

[14] Di Gianfrancesco, A.; Blum, R.: A-USC programs in the European Union, in: Mater. Ultra-Supercritical Adv. Ultra-Supercritical Power Plants, Elsevier, 2017: pp. 773–846. DOI: 10.1016/B978-0-08-100552-1.00024-510.1016/B978-0-08-100552-1.00024-5Search in Google Scholar

[15] Sanicro 25 Datasheet, Alleima. (2022).Search in Google Scholar

[16] Inconel 617 Datasheet, Spec. Met. (2005), pp. 1–12.Search in Google Scholar

[17] Haarmann, K.; Vaillant, J.; Vandenberghe, B.; Bendick, W.; Arbab, A.: The T91/P91 Book, VALLOUREC & MANNESMANN TUBES, 2002.Search in Google Scholar

Received: 2023-09-19
Accepted: 2023-11-28
Published Online: 2024-01-25
Published in Print: 2024-01-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2023-1063/html
Scroll to top button