Home Corrosion behavior of Q345 steel in a simulated industrial atmosphere
Article
Licensed
Unlicensed Requires Authentication

Corrosion behavior of Q345 steel in a simulated industrial atmosphere

  • K. Du

    is an Associate Professor in the School of Materials Science and Engineering at Shenyang University of Technology. His research interests are focused on sheet metal forming theory and processing technology. He has presided over the National Natural Science Foundation of China, the Doctoral Start-up Foundation of Liaoning Province, and the Basic Scientific Research Project of the Education Department of Liaoning Province.

    EMAIL logo
    , Z. Zhang , S. You , X. Zuo

    is an Associate Professor in the School of Materials Science and Engineering at Shenyang University of Technology. Her research interests are focused on serviceability and service life evaluation of metal materials.She has presided over the National Natural Youth Fund, the Doctoral Starting Fund of Liaoning Provincial Science and Technology Department, and the project of Liaoning Provincial Education Department.

    , B. Zheng , Y. Ren , L. Sun , W. Zheng , H. Huang and X. Yuan
Published/Copyright: January 25, 2024
Become an author with De Gruyter Brill

Abstract

The corrosion process of Q345 steel in simulated industrial atmospheric surroundings using NaHSO3 as the corrosion medium was performed. Corrosion weight loss, X-ray diffraction (XRD), electron probe microanalysis (EPMA), laser scanning confocal microscopy (LSCM), and scanning electron microscopy (SEM) were utilized to investigate the corrosion behavior of Q345 steel samples at various corrosion times. The results indicate that, in the industrial atmospheric acceleration system, the corrosion law of Q345 steel follows an exponential function model and that as the corrosion period lengthens, the rate of corrosion declines steadily. γ-FeOOH, α-FeOOH, Fe3O4, Fe3O2, and FeO make up the majority of the corrosion products on the surface of rust layer, and the rust layer structure is generally loose in the first stages of corrosion. As the corrosion time lengthens, the corrosion products transform from needle-like to cluster-like and the rust layer will become thicker. In addition, there is a segregation of the elements Cr, S, and O in the rust layer of Q345 steel.

Kurzfassung

Q345-Stahl wurde mit NaHSO3 als Korrosionsmedium in simulierter industrieller atmosphärischer Umgebung korrodiert. Zur Untersuchung des Korrosionsverhaltens von Proben aus Q345-Stahl bei unterschiedlicher Korrosionsdauer wurde der durch Korrosion verursachte Gewichtsverlust gemessen sowie mit Röntgenbeugung (XRD), Elektronenstrahlmikroanalyse (ESMA), konfokaler Laserscanning-Mikroskopie (LSCM) und Rasterelektronenmikroskopie (REM) gearbeitet. Die Ergebnisse zeigen, dass das Korrosionsgesetz von Q345-Stahl im Beschleunigungssystem der Industrieatmosphäre einem Modell mit Exponentialfunktion folgt und die Korrosionsgeschwindigkeit mit fortschreitender Korrosionsdauer kontinuierlich abnimmt. γ-FeOOH, α-FeOOH, Fe3O4, Fe3O2 und FeO bilden den Großteil der Korrosionsprodukte auf der Oberfläche der Rostschicht. In der Regel bildet die Rostschicht in der ersten Phase eine lose Struktur aus. Mit zunehmender Korrosionsdauer wird die Rostschicht dicker und die Korrosionsprodukte verändern ihre Erscheinung von nadelartig hin zu clusterartig. In der Rostschicht von Q345-Stahl kommt es darüber hinaus zur Segregation der Elemente Cr, S, und O.

About the authors

K. Du

is an Associate Professor in the School of Materials Science and Engineering at Shenyang University of Technology. His research interests are focused on sheet metal forming theory and processing technology. He has presided over the National Natural Science Foundation of China, the Doctoral Start-up Foundation of Liaoning Province, and the Basic Scientific Research Project of the Education Department of Liaoning Province.

X. Zuo

is an Associate Professor in the School of Materials Science and Engineering at Shenyang University of Technology. Her research interests are focused on serviceability and service life evaluation of metal materials.She has presided over the National Natural Youth Fund, the Doctoral Starting Fund of Liaoning Provincial Science and Technology Department, and the project of Liaoning Provincial Education Department.

5

5 Acknowledgments

All the works were funded by the National Natural Science Foundation of China (Grant No. 52305396), the Natural Science Foundation Funding Program of Liaoning Province(Grant No. 2023-MSLH-265), and the Basic Scientific Research Project of the Education Department of Liaoning Province (Grant No. JYTMS20231201).

5

5 Danksagung

Alle Arbeiten wurden von der National Natural Science Foundation of China (Förderkennzeichen 52305396), dem Natural Science Foundation Förderungsprogramm der Provinz Liaoning (Förderkennzeichen 2023-MSLH-265), und dem wissenschaftlichen Grundlagenforschungsprojekts des Bildungsministeriums der Provinz Liaoning (Förderkennzeichen JYTMS20231201) finanziert.

References / Literatur

[1] Du, K.; Huang, S. H.; Li, X. Q.; Wang, H. B.; Zheng, W. T.; Yuan, X. G.: Evolution of yield behavior for AA6016-T4 and DP490 – Towards a systematic evaluation strategy for material models. International Journal of Plasticity. 154 (2022), p. 103302. DOI:10.1016/j.ijplas.2022.10330210.1016/j.ijplas.2022.103302Search in Google Scholar

[2] Du, K.; Huang, S. H.; Hou, Y.; Wang, H. B.; Wang, Y. X.; Zheng, W. T.; Yuan, X. G.: Characterization of the asymmetric evolving yield and flow of 6016-T4 aluminum alloy and DP490 steel. Journal of Materials Science & Technology. 133 (2023), pp. 209–229. DOI:10.1016/j.jmst.2022.05.04010.1016/j.jmst.2022.05.040Search in Google Scholar

[3] Liu, P.; Hu, L. L.; Zhao, X. Y.; Zhang, Q. H.; Yu, Z. S.; Hu, J. M.; Chen, Y. Q.; Wu, F. F.; Cao, F. H.: Investigation of microstructure and corrosion behavior of weathering steel in aqueous solution containing different anions for simulating service environments. Corrosion Science. 170 (2020), p. 108686. DOI:10.1016/j.corsci.2020.10868610.1016/j.corsci.2020.108686Search in Google Scholar

[4] Hao, L.; Zhang, S. X.; Dong, J. H.; Wei, K.: Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments. Corrosion Science. 53 (2011) 12, pp. 4187–4192. DOI:10.1016/j.corsci.2011.08.02810.1016/j.corsci.2011.08.028Search in Google Scholar

[5] Renner, F. U.; Stierle, A.; Dosch, H.; Kolb, D. M.; Lee, T. L.; Zegenhagen, J.: Initial corrosion observed on the atomic scale. Nature. 439(2006), pp. 707–710. DOI:10.1038/nature0446510.1038/nature04465Search in Google Scholar PubMed

[6] Fuente, D. D. L.; Díaz, I.; Simancas, J.; Chico, B.; Morcillo, M.: Long-term atmospheric corrosion of mild steel. Corrosion Science. 53 (2011) 2, pp. 604–617. DOI:10.1016/j.corsci.2010.10.00710.1016/j.corsci.2010.10.007Search in Google Scholar

[7] Liu, Y. W.; Gu, T. Z.; Wang, Z. Y.; Wang, C.; Cao, G. W.: Corrosion behavior of Q235 and Q450NQR1 exposed to marine atmospheric environment in Nansha, China for 34 months. Acta Metallurgica Sinica. 58 (2022) 12, pp. 1623–1632. DOI:10.11900/0412.1961.2021.0057610.11900/0412.1961.2021.00576Search in Google Scholar

[8] Casta, J. G.; Botero, C. A.; Restrepo, A. H.; Agudelo, E. A.; Correa, E.; Echeverría, F.: Atmospheric corrosion of carbon steel in Colombia. Corrosion Science. 52 (2010) 1, pp. 216–223. DOI:10.1016/j.corsci.2009.09.00610.1016/j.corsci.2009.09.006Search in Google Scholar

[9] Evans, U. R.; Taylor, C. A. J.: Mechanism of atmospheric rusting. Corrosion Science. 12 (1972) 3, pp. 227–246. DOI:10.1016/S0010-938X(72)90671-310.1016/S0010-938X(72)90671-3Search in Google Scholar

[10] Han, W.; Pan, C.; Wang, Z. Y.; Yu, G. C.: Initial atmospheric corrosion of carbon steel in industrial environment. Journal of Materials Engineering and Performance. 24 (2015), pp. 864–874. DOI:10.1007/s11665-014-1329-510.1007/s11665-014-1329-5Search in Google Scholar

[11] Hao, L.; Zhang, S. X.; Dong, J. H.; Ke, W.: Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere. Corrosion Science 59 (2012), pp. 270–276. DOI:10.1016/j.corsci.2012.03.01010.1016/j.corsci.2012.03.010Search in Google Scholar

[12] Castaño, J. G.; Botero, C. A.; Restrepo, A. H.; Agudelo, E. A.; Correa, E.; Echeverría, F.: Atmospheric corrosion of carbon steel in Colombia. Corrosion Science. 52 (2010) 1, pp. 216–223. DOI:10.1016/j.corsci.2009.09.00610.1016/j.corsci.2009.09.006Search in Google Scholar

[13] Townsend, H. E.: Effects of alloying elements on the corrosion of steel in industrial atmospheres. Corrosion. 57 (2001) 6, pp. 497–501. DOI:10.5006/1.329037410.5006/1.3290374Search in Google Scholar

[14] Zhao, Q. H.; Liu, W.; Zhu, Y. C.; Zhang, B. L.; Li, S. Z.; Lu, M. X.: Effect of small content of chromium on wet-dry acid corrosion behavior of low alloy steel. Acta Metallurgica Sinica. 30 (2016), pp. 164–175. DOI:10.1007/s40195-016-0513-z10.1007/s40195-016-0513-zSearch in Google Scholar

[15] Sun, M. H.; Du, C. W.; Liu, Z. Y.; Liu, C.; Li, X. G.; Wu, Y. M.: Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corrosion Science. 186 (2021), p. 109427. DOI:10.1016/j.corsci.2021.10942710.1016/j.corsci.2021.109427Search in Google Scholar

[16] Huang, Y. L.; Yang, D.; Xu,Y.; Lu, D. Z.; Yang, L. H.; Wang, X. T.: Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor. Journal of Materials Engineering and Performance 29 (2020), pp. 5840–5853. DOI:10.1007/s11665-020-05107-y10.1007/s11665-020-05107-ySearch in Google Scholar

[17] Hao, L.; Zhang, S.X; Dong, J. H.; Ke, W.: Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere. Corrosion science. 58 (2012), pp. 175–180. DOI:10.1016/j.corsci.2012.01.01710.1016/j.corsci.2012.01.017Search in Google Scholar

[18] Chen Y.Y, Tzeng H.J, Wei L.I, Wang, L. H.; Oung, J. C.; Shih, H. C.: Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions. Corrosion Science 47 (2005) 4, pp. 1001–1021. DOI:10.1016/j.corsci.2004.04.00910.1016/j.corsci.2004.04.009Search in Google Scholar

[19] Nishimura, T.; Katayama, H.; Noda, K.; Kodama, T.: Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments. Corrosion Science. 42 (2000) 9, pp. 1611–1621. DOI:10.1016/S0010-938X(00)00018-410.1016/S0010-938(00)00018-4XSearch in Google Scholar

[20] Yamashita, M.; Miyuki, H.; Matsuda, Y.; Nagano, H.; Misawa, T.: The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corrosion science. 36 (1994) 2, pp. 283–299. DOI:10.1016/0010-938X(94)90158-910.1016/0010-938X(94)90158-9Search in Google Scholar

[21] Tewary, N. K.; Kundu, A.; Nandi, R.; Saha J. K.; Ghosh, S. K.: Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel. Corrosion Science 113 (2016), pp. 57–63. DOI:10.1016/j.corsci.2016.10.00410.1016/j.corsci.2016.10.004Search in Google Scholar

[22] Fuente, D. D. L.; Alcántara, J.; Chico, B.; Díaz, I.; Jiménez, J. A.; Morcillo, M.: Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques. Corrosion Science 110 (2016), pp. 253–264. DOI:10.1016/j.corsci.2016.04.03410.1016/j.corsci.2016.04.034Search in Google Scholar

[23] Ochoa, N.; Vega, C.; Pébère, N.; Lacaze, J.; Brito, J. L.: CO2 corrosion resistance of carbon steel in relation with microstructure changes. Materials Chemistry and Physics 156 (2015), pp. 198–205. DOI:10.1016/j.matchemphys.2015.02.04710.1016/j.matchemphys.2015.02.047Search in Google Scholar

[24] Hao, X. H.; Dong, J. H.; Etim, I. I. N.; Wei, J.; Ke, W.: Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corrosion Science. 110 (2016), pp. 296–304. DOI:10.1016/j.corsci.2016.04.04210.1016/j.corsci.2016.04.042Search in Google Scholar

Received: 2023-11-10
Accepted: 2024-01-02
Published Online: 2024-01-25
Published in Print: 2024-01-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2023-1065/html
Scroll to top button