Home Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color
Article
Licensed
Unlicensed Requires Authentication

Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color

  • Caerwyn Ash EMAIL logo , Godfrey Town , Peter Bjerring and Samuel Webster
Published/Copyright: October 13, 2014
Become an author with De Gruyter Brill

Abstract

Background and objective:

To evaluate a novel skin tone meter (STM) to categorize skin tones into one of the six categories of the Fitzpatrick skin type (FST) classification system, thus optimizing safety in light-based dermatological procedures. This numerical classification method measures several components; principally the reaction of human skin to ultraviolet (UV) light exposure, which is used to help predict skin response in laser and intense pulsed light (IPL) treatments.

Materials and methods:

Two-hundred twenty volunteers of varying ethnic origin, age and gender were enrolled in a preliminary study. The subjects’ Fitzpatrick skin type was ascertained by a standardized questionnaire that determined their reaction to significant sunlight exposure. A calibrated prototype STM device (consisting of an optical head at 460 nm, detector, microprocessor, and a liquid crystal display) was used to measure the subjects’ inner arm skin; which typically has little UV exposure and minimal hair, and compared the obtained value with measurements taken from a skin color chart and digital photographs. To evaluate device performance (within subject) across different skin states, a section of skin from the inner arm of a sub-group of eight volunteers was marked into test areas using a template. The skin in each area was then prepared (i) with a control area, (ii) by degreasing with acetone for 1 min to represent dry skin, (iii) with a fine layer of coupling gel to represent hydrated skin, (iv) with a thin layer of petrolatum (Vaseline) to represent oily skin, and (v) with saline solution applied then dried to represent dried perspiration.

Results:

There was a consistent trend between the STM prototype and the assessed skin tone derived from a proprietary skin color chart against the measurement on skin across a range of skin conditions.

Conclusion:

The presented preliminary study demonstrated the subjective nature of the FST classification system and the weakness of skin tone self-assessment by an individual, as judged by expert assessors. The FST classification requires an objective measurement to replace the textual description for each skin tone. It may significantly decrease the risk of potential side effects through overtreatment, and extend treatment to a wider patient population with light-based dermatological procedures.

Zusammenfassung

Hintergrund und Ziel:

Evaluation eines neuen Hautton-Meters (skin tone meter, STM) zur Klassifizierung von Hauttönen in eine der sechs Hauttypen nach Fitzpatrick mit dem Ziel, die Sicherheit von lichtbasierten dermatologischen Verfahren zu verbessern. Dieses numerische Klassifikationsverfahren misst mehrere Komponenten – hauptsächlich die Reaktion der menschlichen Haut auf UV-Licht, die verwendet wird, um die zu erwartenden Hautreaktionen nach Laser- oder Intensed Pulsed Light (IPL)-Behandlung vorherzusagen.

Material und Methoden:

An der Vorstudie nahmen 220 Freiwillige von unterschiedlicher ethnischer Herkunft, Alter und Geschlecht teil. Der Fitzpatrick-Hauttyp jedes Probanden wurde zunächst anhand eines standardisierten Fragebogens, mit dem die Hautreaktion auf Sonneneinstrahlung bestimmt wird, ermittelt. Ein kalibrierter STM-Prototyp, bestehend aus einem optischen Kopf mit einer 460 nm-Lichtquelle, Detektor, Mikroprozessor und einer Flüssigkristallanzeige, wurde verwendet, um die Haut am Innenarm der Probanden zu vermessen. Der Innenarm wurde ausgewählt, da dieser Hautbereich typischerweise der UV-Strahlung nur geringfügig ausgesetzt und wenig behaart ist. Die Messwerte wurden mit denen verglichen, die anhand einer Hautfarbkarte und digitalen Fotos gewonnen wurden. Um die Funktionsfähigkeit des Prototyps bei verschiedenen Hautzuständen zu bewerten, wurde die Haut des Innenarms bei einer Untergruppe von acht Probanden mit Hilfe einer Schablone verschiedenartig präpariert: (i) Kontrollbereich (unbelassene Haut), (ii) trockene Haut durch Entfetten mit Aceton für 1 min, (iii) feuchte Haut durch Auftrag einer dünnen Schicht Koppelgel, (iv) leicht fettige Haut durch Auftrag einer dünnen Schicht Vaseline, und (v) Aufbringen von Kochsalzlösung und anschließende Trocknung, um getrockneten Schweiß zu simulieren.

Ergebnisse:

Es zeigte sich ein einheitlicher Trend zwischen den Messwerten des STM-Prototyps und der Hautfarbe, wie sie anhand einer Hautfarbkarte für verschiedene Hautzustände abgeleitet wurde.

Fazit:

Die präsentierte Vorstudie macht die Subjektivität des Fitzpatrick-Klassifikationssystems und die Schwächen einer Hautton-Selbsteinschätzung deutlich. Eine Hauttyp-Bestimmung erfordert eine objektive Messung, um die Texturbeschreibung für jede Hautfarbe zu ersetzen. Dies kann das Risiko möglicher Nebenwirkungen durch Überbehandlung erheblich verringern und die Behandlung mit lichtbasierten dermatologischen Verfahren einer breiteren Patientenpopulation öffnen.


Corresponding author: Caerwyn Ash, School of Medicine, Swansea University, Swansea, SA2 8PP, UK, e-mail:

Acknowledgments

We are grateful to Dr. Aled Jones for his assistance in following guidelines for this research involving human subjects at Swansea University and the approval of this study. We kindly acknowledge the assistance of Dr. Richard Hugtenburg, and Dr. Susanna Town, University of Calgary, Canada, in the preparation of this manuscript. The development of a prototype device was assisted by CyDen Ltd.

  1. Conflicts of interest statement: Caerwyn Ash received travel expenses from Swansea University, and salary from CyDen Ltd. Godfrey Town receives salary and travel grants from CyDen Ltd., Swansea, SA1 8PH, UK and Unilever, Trumball, CT 06611, USA. Peter Bjerring received consultancy fees from CyDen Ltd., Swansea, SA1 8PH, UK. Samuel Webster has no disclosures.

References

[1] Nanni CA, Alster TS. Laser-assisted hair removal: side effects of Q-switched Nd:YAG, long-pulsed ruby, and alexandrite lasers. J Am Acad Dermatol 1999;41(2 Pt 1):165–71.10.1016/S0190-9622(99)70043-5Search in Google Scholar

[2] Willey A, Anderson RR, Azpiazu JL, Bakus AD, Barlow RJ, Dover JS, Garden JM, Kilmer SL, Landa N, Manstein D, Ross EV Jr, Sadick N, Tanghetti EA, Yaghmai D, Zelickson BD. Complications of laser dermatologic surgery. Lasers Surg Med 2006;38(1):1–15.10.1002/lsm.20286Search in Google Scholar

[3] Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 1988;124(6):869–71.10.1001/archderm.1988.01670060015008Search in Google Scholar

[4] Youn JI, Oh JK, Kim BK, Suh DH, Chung JH, Oh SJ, Kim JJ, Kang SH. Relationship between skin phototype and MED in Korean, brown skin. Photodermatol Photoimmunol Photomed 1997;13(5–6):208–11.10.1111/j.1600-0781.1997.tb00233.xSearch in Google Scholar

[5] Sachdeva S. Fitzpatrick skin typing: applications in dermatology. Indian J Dermatol Venereol Leprol 2009;75(1):93–6.10.4103/0378-6323.45238Search in Google Scholar

[6] Edwards EA, Duntley SQ. The pigments and color of human skin. Am J Anat 1939;65:1–33.10.1002/aja.1000650102Search in Google Scholar

[7] Viator JA, Komadina J, Svaasand LO, Aguilar G, Choi B, Stuart Nelson J. A comparative study of photoacoustic and reflectance methods for determination of epidermal melanin content. J Invest Dermatol 2004;122(6):1432–9.10.1111/j.0022-202X.2004.22610.xSearch in Google Scholar

[8] Bjerring P, Andersen PH. Skin reflectance spectrophotometry. Photodermatol 1987;4(3):167–71.Search in Google Scholar

[9] Andersen PH, Bjerring P. Spectral reflectance of human skin in vivo. Photodermatol Photoimmunol Photomed 1990;7(1):5–12.Search in Google Scholar

[10] Dwyer T, Muller HK, Blizzard L, Ashbolt R, Phillips G. The use of spectrophotometry to estimate melanin density in Caucasians. Cancer Epidemiol Biomarkers Prev 1998;7(3):203–6.Search in Google Scholar

[11] Claridge E, Cotton S, Hall P, Moncrieff M. From colour to tissue histology: Physics-based interpretation of images of pigmented skin lesions. Med Image Anal 2003;7(4):489–502.10.1016/S1361-8415(03)00033-1Search in Google Scholar

[12] Dawson JB, Barker DJ, Ellis DJ, Grassam E, Cotterill JA, Fisher GW, Feather JW. A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys Med Biol 1980;25(4):695–709.10.1088/0031-9155/25/4/008Search in Google Scholar PubMed

[13] Verkruysse W, Svaasand LO, Franco W, Nelson JS. Remittance at a single wavelength of 390 nm to quantify epidermal melanin concentration. J Biomed Opt 2009;14(1):014005.10.1117/1.3065542Search in Google Scholar PubMed PubMed Central

[14] Ash C, Jones S, Town G, Clement M, Bjerring P, Kiernan M. Optimum choice of irradiation wavelength for skin color determination using skin reflectance measurements. Abstract of the 31st ASLMS Annual Conference, Dallas, Texas, April 1–3, 2011. http://de.scribd.com/doc/156937095/Optimum-Choice-of-Irradiation-Wavelength-for-Skin-Colour-Determination-Using-Skin-Reflectance-Measurements-ASLMS-POSTER [Accessed July 29, 2014].Search in Google Scholar

[15] Anderson RR, Hu J, Parrish JA. Optical radiation transfer in the human skin and applications in in vivo remittance spectroscopy. In: Marks R, Payne PA, editors. Bioengineering and the skin. Lancaster: MTP Press Limited; 1981, p. 253–65.10.1007/978-94-009-7310-7_28Search in Google Scholar

[16] Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol 1981;77(1):13–9.10.1111/1523-1747.ep12479191Search in Google Scholar PubMed

[17] Firbank M, Arridge SR, Schweiger M, Delpy DT. An investigation of light transport through scattering bodies with non-scattering regions. Phys Med Biol 1996;41(4):767–83.10.1088/0031-9155/41/4/012Search in Google Scholar PubMed

[18] Anderson RR, Farinelli W, Laubach H, Manstein D, Yaroslavsky AN, Gubeli J 3rd, Jordan K, Neil GR, Shinn M, Chandler W, Williams GP, Benson SV, Douglas DR, Dylla HF. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med 2006;38(10):913–9.10.1002/lsm.20393Search in Google Scholar PubMed

[19] Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;220(4596):524–7.10.1126/science.6836297Search in Google Scholar PubMed

[20] Ash C. Inter-body melanin distribution of eight human subjects. Private communication.Search in Google Scholar

[21] Wong TH, Jackson IJ, Rees JL. The physiological and phenotypic determinants of human tanning measured as change in skin colour following a single dose of ultraviolet B radiation. Exp Dermatol 2010;19(7):667–73.10.1111/j.1600-0625.2010.01078.xSearch in Google Scholar PubMed

Received: 2013-11-20
Revised: 2014-5-27
Accepted: 2014-7-29
Published Online: 2014-10-13
Published in Print: 2015-5-1

©2015 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/plm-2013-0056/html
Scroll to top button