Home Harnessing host–guest interactions to control structure at the nanoscale
Article
Licensed
Unlicensed Requires Authentication

Harnessing host–guest interactions to control structure at the nanoscale

  • Marta Śliwa

    Marta Śliwa received her B.S. in Chemistry from Boston University in 2017 and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where she is studying the synthesis and properties of anisotropic nanoparticles.

    , Benjamin O. Stephens

    Benjamin O. Stephens graduated from the College of Charleston with a B.S. in Chemistry and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where he is investigating the mechanism of anisotropic nanocrystal growth.

    , Zhe Zhang

    Zhe Zhang received his B.S. in Chemistry from Peking University in 2019 and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where he is studying the synthesis and properties of anisotropic nanoparticles.

    and Thomas J. Kempa

    Thomas J. Kempa is a 2013 IUPAC-Solvay Young Chemist awardee and currently an Assistant Professor of Chemistry and of Materials Science and Engineering at Johns Hopkins University. After receiving his B.S. in Chemistry from Boston College in 2004, Tom was awarded a Marshall Scholarship and spent 2 years at Imperial College London. Returning to the United States, he began graduate studies under the direction of Prof. Charles Lieber at Harvard University and earned his Ph.D. in 2012. Thereafter, Tom conducted postdoctoral studies in the laboratory of Prof. Daniel Nocera, first at MIT and then Harvard. In 2015, Tom joined Johns Hopkins University as a faculty member in the Department of Chemistry. Professor Kempa’s research group develops new methods to prepare and study low-dimensional inorganic crystals from nanoparticles (0D) to few-atom thick sheets (2D) whose exceptional properties render them intriguing platforms for optoelectronic, energy conversion, and quantum science studies. His group’s expertise spans the areas of physical, inorganic, and materials chemistry. Professor Kempa is the recipient of numerous awards including an NSF CAREER Award, a Toshiba Distinguished Young Investigator Award, a Dreyfus Foundation Fellowship in Environmental Chemistry, and a Hopkins Discovery Award.

    EMAIL logo
Published/Copyright: September 14, 2020

Abstract

Host–guest interactions mediate many chemical and biochemical transformations and are extensively exploited in a number of industrially-relevant chemical processes. Many porous inorganic (e.g., zeolite) and molecular (e.g., metal-organic framework) hosts engage reagents in their environment through selective host–guest interactions. While researchers frequently capitalize on host–guest interactions to sequester chemical species or to catalyze reactions, these interactions can also be used to direct nanomaterial synthesis. In this Perspective we highlight the promise and opportunities for harnessing host–guest interactions to control the structure and dimensionality of materials. We focus our discussion on emerging strategies in soft chemistry and promising new directions which use porous ionic solids to direct the growth of complex nanoscale dimers and Janus nanoparticles.


Corresponding author: Thomas J. Kempa, Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA; and Department of Materials Science & Engineering, Johns Hopkins University, Baltimore, MD, USA, E-mail:
Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.Marta Śliwa and Benjamin O. Stephens are equally contributing first authors.

About the authors

Marta Śliwa

Marta Śliwa received her B.S. in Chemistry from Boston University in 2017 and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where she is studying the synthesis and properties of anisotropic nanoparticles.

Benjamin O. Stephens

Benjamin O. Stephens graduated from the College of Charleston with a B.S. in Chemistry and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where he is investigating the mechanism of anisotropic nanocrystal growth.

Zhe Zhang

Zhe Zhang received his B.S. in Chemistry from Peking University in 2019 and is currently a Ph.D. student in the Kempa Group at Johns Hopkins University where he is studying the synthesis and properties of anisotropic nanoparticles.

Thomas J. Kempa

Thomas J. Kempa is a 2013 IUPAC-Solvay Young Chemist awardee and currently an Assistant Professor of Chemistry and of Materials Science and Engineering at Johns Hopkins University. After receiving his B.S. in Chemistry from Boston College in 2004, Tom was awarded a Marshall Scholarship and spent 2 years at Imperial College London. Returning to the United States, he began graduate studies under the direction of Prof. Charles Lieber at Harvard University and earned his Ph.D. in 2012. Thereafter, Tom conducted postdoctoral studies in the laboratory of Prof. Daniel Nocera, first at MIT and then Harvard. In 2015, Tom joined Johns Hopkins University as a faculty member in the Department of Chemistry. Professor Kempa’s research group develops new methods to prepare and study low-dimensional inorganic crystals from nanoparticles (0D) to few-atom thick sheets (2D) whose exceptional properties render them intriguing platforms for optoelectronic, energy conversion, and quantum science studies. His group’s expertise spans the areas of physical, inorganic, and materials chemistry. Professor Kempa is the recipient of numerous awards including an NSF CAREER Award, a Toshiba Distinguished Young Investigator Award, a Dreyfus Foundation Fellowship in Environmental Chemistry, and a Hopkins Discovery Award.

References

[1] G. E. Boyd, J. Schubert, A. W. Adamson. J. Am. Chem. Soc.69, 2818 (1947).10.1021/ja01203a064Search in Google Scholar

[2] M. A. Keane. Colloid. Surface. Physicochem. Eng. Aspect.138, 11 (1998).10.1016/S0927-7757(97)00078-2Search in Google Scholar

[3] M. Sprynskyy, M. Lebedynets, A. P. Terzyk, P. Kowalczyk, J. Namieśnik, B. Buszewski. J. Colloid Interface Sci.284, 408 (2005).10.1016/j.jcis.2004.10.058Search in Google Scholar

[4] J. Liu, Z. Huang, J. Sun, Y. Zou, B. Gong. J. Alloys Compd.815, 152514 (2020).10.1016/j.jallcom.2019.152514Search in Google Scholar

[5] H. G. Karge. Stud. Surf. Sci. Catal.105, 1901 (1997).10.1016/S0167-2991(97)80658-1Search in Google Scholar

[6] B. M. Abu-Zied, W. Schwieger, A. Unger. Appl. Catal. B Environ.84, 277 (2008).10.1016/j.apcatb.2008.04.004Search in Google Scholar

[7] S. Shwan, M. Skoglundh, L. F. Lundegaard, R. R. Tiruvalam, T. V. W. Janssens, A. Carlsson, P. N. R. Vennestrøm. ACS Catal.5, 16 (2015).10.1021/cs5015139Search in Google Scholar

[8] P. N. R. Vennestrøm, L. F. Lundegaard, C. Tyrsted, D. A. Bokarev, A. I. Mytareva, G. N. Baeva, A. Y. Stakheev, T. V. W. Janssens. Top. Catal.62, 100 (2019).10.1007/s11244-018-1096-xSearch in Google Scholar

[9] K. S. Hui, C. Y. H. Chao, S. C. Kot. J. Hazard Mater.127, 89 (2005).10.1016/j.jhazmat.2005.06.027Search in Google Scholar PubMed

[10] N. Widiastuti, H. Wu, M. Ang, D. Zhang. Desalination218, 271 (2008).10.1016/j.desal.2007.02.022Search in Google Scholar

[11] N. Widiastuti, H. Wu, H. M. Ang, D. Zhang. Desalination277, 15 (2011).10.1016/j.desal.2011.03.030Search in Google Scholar

[12] J. Xie, W. Meng, D. Wu, Z. Zhang, H. Kong. J. Hazard Mater.231, 57 (2012).10.1016/j.jhazmat.2012.06.035Search in Google Scholar

[13] Q. Xie, J. Xie, Z. Wang, D. Wu, Z. Zhang, H. Kong. Microporous Mesoporous Mater.179, 144 (2013).10.1016/j.micromeso.2013.05.027Search in Google Scholar

[14] S. R. Taffarel, J. Rubio. Miner. Eng.23, 771 (2010).10.1016/j.mineng.2010.05.018Search in Google Scholar

[15] J. Weitkamp. Solid State Ionics131, 175 (2000).10.1016/S0167-2738(00)00632-9Search in Google Scholar

[16] A. Corma. Chem. Rev.97, 2373 (1997).10.1021/cr960406nSearch in Google Scholar PubMed

[17] Y. Z. Chen, R. Zhang, L. Jiao, H. L. Jiang. Coord. Chem. Rev.362, 1 (2018).10.1016/j.ccr.2018.02.008Search in Google Scholar

[18] C. Xiao, M. A. Silver, S. Wang. Dalton Trans.46, 16381 (2017).10.1039/C7DT03670ASearch in Google Scholar

[19] C. M. Doherty, E. Knystautas, D. Buso, L. Villanova, K. Konstas, A. J. Hill, M. Takahashi, P. Falcaro. J. Mater. Chem.22, 11470 (2012).10.1039/c2jm31798bSearch in Google Scholar

[20] J. B. DeCoste, T. J. Demasky, M. J. Katz, O. K. Farha, J. T. Hupp. New J. Chem.39, 2396 (2015).10.1039/C4NJ02093FSearch in Google Scholar

[21] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort. Chem. Soc. Rev.44, 6804 (2015).10.1039/C4CS00395KSearch in Google Scholar

[22] Y. Wen, J. Zhang, Q. Xu, X. T. Wu, Q. L. Zhu. Coord. Chem. Rev.376, 248 (2018).10.1016/j.ccr.2018.08.012Search in Google Scholar

[23] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C. Y. Su. Chem. Soc. Rev.43, 6011 (2014).10.1039/C4CS00094CSearch in Google Scholar

[24] M. C. Wasson, C. T. Buru, Z. Chen, T. Islamoglu, O. K. Farha. Appl. Catal. Gen.586, 117214 (2019).10.1016/j.apcata.2019.117214Search in Google Scholar

[25] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion. Science298, 1762 (2002).10.1126/science.1075948Search in Google Scholar PubMed

[26] A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf. Science343, 66 (2014).10.1126/science.1246738Search in Google Scholar PubMed

[27] M. L. Aubrey, M. T. Kapelewski, J. F. Melville, J. Oktawiec, D. Presti, L. Gagliardi, J. R. Long. J. Am. Chem. Soc.141, 5005 (2019).10.1021/jacs.9b00654Search in Google Scholar PubMed

[28] M. A. Solomos, F. J. Claire, T. J. Kempa. J. Mater. Chem.7, 23537 (2019).10.1039/C9TA06534BSearch in Google Scholar

[29] F. J. Claire, S. M. Tenney, M. M. Li, M. A. Siegler, J. S. Wagner, A. S. Hall, T. J. Kempa. J. Am. Chem. Soc.140, 10673 (2018).10.1021/jacs.8b06331Search in Google Scholar PubMed

[30] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky. Nature368, 317 (1994).10.1038/368317a0Search in Google Scholar

[31] Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao. Angew. Chem. Int. Ed.44, 7053 (2005).10.1002/anie.200501561Search in Google Scholar PubMed

[32] M. Niederberger, N. Pinna, J. Polleux, M. Antonietti. Angew. Chem. Int. Ed.43, 2270 (2004).10.1002/anie.200353300Search in Google Scholar PubMed

[33] A. F. Hirschbiel, B. V. K. J. Schmidt, P. Krolla-Sidenstein, J. P. Blinco, C. Barner-Kowollik. Macromolecules48, 4410 (2015).10.1021/acs.macromol.5b00923Search in Google Scholar

[34] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller, J. A. Shelnutt. Nano Lett.7, 3650 (2007).10.1021/nl0719123Search in Google Scholar PubMed

[35] M. Zhang, M. Drechsler, A. H. E. Müller. Chem. Mater.16, 537 (2004).10.1021/cm034760vSearch in Google Scholar

[36] L. Shi, Y. Xu, Q. Li. Nanoscale2, 2104 (2010).10.1039/c0nr00279hSearch in Google Scholar PubMed

[37] M. Zaarour, M. El Roz, B. Dong, R. Retoux, R. Aad, J. Cardin, C. Dufour, F. Gourbilleau, J. P. Gilson, S. Mintova. Langmuir30, 6250 (2014).10.1021/la5006743Search in Google Scholar PubMed

[38] B. Wang, Y. Ding, K. Lu, Y. Guan, X. Li, H. Xu, P. Wu. J. Catal.381, 443 (2020).10.1016/j.jcat.2019.11.021Search in Google Scholar

[39] Y. Liu, W. Zhang, S. Li, C. Cui, J. Wu, H. Chen, F. Huo. Chem. Mater.26, 1119 (2014).10.1021/cm4034319Search in Google Scholar

[40] A. E. Kossak, B. O. Stephens, Y. Tian, P. Liu, M. Chen, T. J. Kempa. Nano Lett.18, 2324 (2018).10.1021/acs.nanolett.7b05090Search in Google Scholar PubMed

[41] Z. L. Wang, R. Guo, L. X. Ding, Y. X. Tong, G. R. Li. Sci. Rep.3, 1204 (2013).10.1038/srep01204Search in Google Scholar PubMed PubMed Central

[42] N. S. Flores-López, J. Castro-Rosas, R. Ramírez-Bon, A. Mendoza-Córdova, E. Larios-Rodríguez, M. Flores-Acosta. J. Mol. Struct.1028, 110 (2012).10.1016/j.molstruc.2012.05.080Search in Google Scholar

[43] J. J. Miao, L. P. Jiang, C. Liu, J. M. Zhu, J. J. Zhu. Inorg. Chem.46, 5673 (2007).10.1021/ic700404nSearch in Google Scholar PubMed

[44] C. Shang, W. Hong, J. Wang, E. Wang. J. Power Sources285, 12 (2015).10.1016/j.jpowsour.2015.03.092Search in Google Scholar

[45] Y. Jia, T. Y. Sun, J. H. Wang, H. Huang, P. Li, X. F. Yu, P. K. Chu. CrystEngComm16, 6141 (2014).10.1039/C4CE00440JSearch in Google Scholar

Published Online: 2020-09-14
Published in Print: 2020-12-16

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2020-0701/html
Scroll to top button