Home Ordinary Generating Functions of Binary Products of Third-Order Recurrence Relations and 2-Orthogonal Polynomials
Article Open Access

Ordinary Generating Functions of Binary Products of Third-Order Recurrence Relations and 2-Orthogonal Polynomials

  • Hind Merzouk EMAIL logo , Ali Boussayoud EMAIL logo and Abdelhamid Abderrezzak EMAIL logo
Published/Copyright: February 16, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we introduce the new generating functions for the product of some numbers and 2-orthogonal polynomials by making use of the symmetrizing endomorphism operators πe2e3πe1e2 to the series n=0+Sn(A3)e1nzn.

2020 Mathematics Subject Classification: Primary 06B05, 06D35; Secondary 35R30, 39A10

1. Introduction

The Tribonacci sequence {Tn}n=0+ and Tribonacci Lucas sequence {Kn}n=0+ are defined respectively by the third order recurrence relations

Tn=Tn1+Tn2+Tn3andKn=Kn1+Kn2+Kn3

for n ≥ 3, with the initial values T0 = 0, T1 = T2 = 1, K0 = 3, K1 = 1, and K2 = 3, respectively. The Tribonacci numbers Tn were defined in [13] for the first time and some properties for Tn have been investigated in [9, 13]. In [9: Example 3.3], the determinants expression

(1.1)Tn+1=|111111111111|n,n1

was derived. There are many generalizations of the Tribonacci sequences Tn. One of these generalizations is the generalized Tribonacci sequence Vn(x, y, z; a, b, c) defined for n ≥ 3 by

(1.2)Vn(x,y,z;a,b,c)=xVn1(x,y,z;a,b,c)+yVn2(x,y,z;a,b,c)+zVn3(x,y,z;a,b,c),

where V0(x, y, z; a, b, c) = a, V1(x, y, z; a, b, c) = b, V2(x, y, z; a, b,c) = c are arbitrary integers and x, y, z are real numbers.

The generating function of the generalized Tribonacci sequence Vn(x, y, z; a, b, c) is

(1.3)n=0+Vn(x,y,z;a,b,c)zn=a+(bax)z+(cxbya)z21xzyz2z3.

There have been many studies on the generalized Tribonacci numbers Vn(x, y, z; a, b, c). For more information, please refer to [10,12] and closely related references therein. Some special cases of the generalized Tribonacci sequence Vn(x, y, z; a, b, c) are as follows:

  1. Vn(1, 1, 1; 0, 1, 1) = Tn, the Tribonacci sequence;

  2. Vn(1, 1, 1; 3, 1, 3) = Kn, the Tribonacci–Lucas sequence;

  3. Vn(0, 1, 1; 3, 0, 2) = Qn, the Perrin sequence;

  4. Vn(0, 1, 1; 1, 1, 1) = Pn, the Padovan (Cordonnier) sequence;

  5. Vn(0, 1, 1; 1, 0, 1) = Rn, the Van Der Laan sequence;

  6. Vn(1, 0, 1; 0, 1, 1) = Nn, the Narayana sequence;

  7. Vn(1, 1, 2; 0, 1, 1) = Jn(3), the third order Jacobsthal sequence;

  8. Vn(1,1, 2; 2,1, 5) = jn(3), the third order Jacobsthal Lucas sequence.

In [9: Example 3.4], the determinants expression

(1.4)Qn+1=|2130101011101110|n,n1

was derived. In [16], the Tribonacci polynomials Tn(x) were defined for n ≥ 3 by

Tn(x)=x2Tn1(x)+xTn2(x)+Tn3(x),

where T0(x) = 0, T1(x) = 1, and T2(x) = x2. In [9: Theorem 3.10], the determinant

(1.5)Tn+1(x)=|x21xx211xx211xx2|n,n1

was established. Now, we recall the notion of d-orthogonal polynomials. A remarkable property of the d-monic orthogonal polynomials sequence is that those sequences satisfy a (d + 1)-order recurrence relation, written in the form

Pm+d+1(x)=(xβm+d)Pm+d(x)ν=0d1γm+dνd1νPm+d1ν(x),m0,

with the initial conditions P0(x) = 1, P–1(x) = 0. So, if d ≥ 2:

Pn(x)=(xβn1)Pn1(x)ν=0n2γd1νn1νPn2ν(x),2nd,

and the regularity conditions γm+100. m ≥ 0. The 2-orthogonal monic Chebyshev polynomials (2-classical) of the first kind {T^n}n0 studied in [11], and defined by the following relations, where α and γ are constants (see also [19]):

T^0(x)=1,T^1(x)=x,T^2(x)=x2αT^n+3(x)=xT^n+2(x)αT^n+1(x)γT^n(x),n0,γ0.

DEFINITION 1.

A d-orthogonal polynomials sequence {Pn}n≥0 is called d-classical d-orthogonal polynomials sequence if both {Pn}n≥0 and its derivative {Pn}n0 are d-orthogonal. For more details, see [8].

Note that the 2-classical 2-orthogonal polynomials sequence is analogous to the Chebyshev orthogonal polynomials sequence of the first kind {T^n}n0 (see [11]). In this contribution, we shall define a new useful operator denoted by πe2e3πe1e2 for which we can formulate, extend and prove new results based on our previous ones, (see [10], [16], [17]). In order to determine generating functions for third-order recurrence relations and 2-classical 2-orthogonal polynomials sequence, we combine between our indicated past techniques and these presented polishing approaches. The further contents of this paper are as follows: Section 1 gives introduction. In Section 2, we introduce a new symmetric function and give some properties of this symmetric function. We also give some more useful definitions which are used in the subsequent sections. In Section 3, we prove our main result which relates the symmetric function defined in the previous section with the symmetrizing operator. This main theorem unifies several previously known results about the generating functions. It is then used to find the new generating functions of products for some know numbers and polynomials, in Section 4.

2. Definitions and some properties

We need some preliminaries on symmetric functions and divided differences. We will follow the conventions of [15] rather than those of [18], so that you can conveniently use multiple alphabets at once.

DEFINITION 2 ([1]).

Let A and E be any sets of given variables. Then we give Sn (AE) by the following form:

(2.1)eE(1ez)aA(1az)=n=0Sn(AE)zn,

with the condition Sn(AE) = 0 for n < 0.

Equation (2.1) can be rewritten in the following form:

n=0Sn(AE)zn=(n=0Sn(A)zn)×(n=0Sn(E)zn),

where

Sn(AE)=i=0Si(A)Sni(E).

Remark 1.

Taking A = {0} in (2.1) gives

n=0Sn(E)zn=eE(1ez).

The summation is in fact limited to a finite number of non-zero terms, in particular:

(2.2)eE(xe)=Sn(xE)=xnS0(E)+xn1S1(E)+xn2S1(E)+

The Sj(–E) are the coefficients of the polynomials Sn(xE) for 0 ≤ jn. These are therefore at the sign near the elementary symmetric functions of the alphabet E, who are void for jn. In particular, when E = {e,e,e,…, e} (we notice E = ne), we have Sn(xne) = (xe)n. The specialization e = 1, i.e., E = {1,1,1,… } (we notice E = n), gives the binomial coefficients:

Sj(n)=(1)j(nj),Sj(n)=(n+j+1j),andSj(ne)=(e)j(nj).

DEFINITION 3 ([2])

Given a function f on ℝn, the divided difference operator is defined as follows:

xixi+1f(x1,,xi,xi+1,,xn)=f(x1,,xi,xi+1,,xn)f(x1,,xi1,xi+1,xi,,xn)xixi+1.

DEFINITION 4 ([3,6])

Let n be positive integer and A2 = {a1, a2} are set of given variables. Then, the n -th symmetric function Sn(a1 + a2) is defined by

Sn(A2)=Sn(a1+a2)=a1n+1a2n+1a1a2,

with

S0(A2)=S0(a1+a2)=1,S1(A2)=S1(a1+a2)=a1+a2,S2(A2)=S2(a1+a2)=a12+a1a2+a22,...

DEFINITION 5 ([4,5])

The symmetrizing operator δa1a2k is defined by

(2.3)δa1a2kf(a1)=a1kf(a1)a2kf(a2)a1a2forallk0.

If f (a1) = a1, the operator (2.3) gives us

δa1a2kf(a1)=a1k+1a2k+1a1a2Sk(a1+a2).

3. Lemmas and main results

In this section, we state and prove our main results.

DEFINITION 6

Given an alphabet E3 = {e1, e2, e3}, the symmetrizing operator is defined by

πe2e3πe1e2f(e1)=e12f(e1)e2e3πe2e3f(e2)e1πe2e3(e2f(e2))(e1e2)(e1e3).

PROPOSITION 1

Let E3 = {e1, e2, e3} be an alphabet. Then we have

Sn(E3)=e2Sn(e1+e2)e3Sn(e1+e3)e2e3.

Proof. We have (see [7])

1n=0+Sn(e1+e2)zn=1(1e1z)(1e2z).

Then

2n=0+Sn(e1+e3)zn=1(1e1z)(1e3z).

Multiplying the equation (1) by e2 and subtracting it from (2) multiplying by e3, we have

n=0+[e2Sn(e1+e2)e3Sn(e1+e3)]zn=e2e3(1e1z)(1e2z)(1e3z).

Thus

n=0+e2Sn(e1+e2)e3Sn(e1+e3)e2e3zn=1(1e1z)(1e2z)(1e3z)=n=0+Sn(e1+e2+e3)zn.

Therefore

e2Sn(e1+e2)e3Sn(e1+e3)e2e3=Sn(e1+e2+e3).

This completes the proof. □

PROPOSITION 2

Let E3 = {e1, e2, e3} be an alphabet. Then we have

Sn(E3)=e1n+1(e1e2)(e1e3)+e2n+2(e2e1)(e2e3)+e3n+3(e3e1)(e3e3).

If E3 = {1, 2, 3} in Proposition 2 gives

Sn(E3)=3n+2+122n+2.

COROLLARY 1

The following identity holds true:

πe2e3Sn(e1+e2)=Sn(E3).

In order to prove our main results, we recall several lemmas below.

LEMMA 1.

Let A3 = {a1, a2, a3} and E3 = {e1, e2, e3} be two alphabets. Then action operatorπe2e3πe1e2on the seriesn=0+Sn(A3)e1nznis given by

πe2e3πe1e2n=0+Sn(A3)e1nzn=n=0+Sn(A3)Sn(E3)zn.

Proof. We have

πe2e3πe1e2n=0+Sn(A3)e1nzn=πe2e3(e1n=0+Sn(A3)e1nzne2n=0+Sn(A3)e2nzn(e1e2))=πe2e3(n=0+Sn(A3)e1n+1e2n+1(e1e2)zn)=πe2e3(n=0+Sn(A3)Sn(e1+e2)zn)=e2n=0+Sn(A3)(e1+e2)zne3n=0+Sn(A3)Sn(e1+e3)zn(e2e3)=n=0+Sn(A3)e2Sn(e1+e2)e3Sn(e1+e3)(e2e3)zn

according to Proposition 1, we have then

πe2e3πe1e2n=0+Sn(A3)e1nzn=n=0+Sn(A3)Sn(E3)zn.

This completes the proof. □

LEMMA 2

Let A3 = {a1, a2, a3} and E2 = {e1, e2} be two alphabets. Then action operator πe1e2on the series1n=0+Sn(A3)e1nznis given by

πe1e21n=0+Sn(A3)e1nzn=1e1e2S2(A3)z2e12e2S3(A3)z3e1e22S3(A3)z3(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn).

Proof. We have

πe1e21n=0+Sn(A3)e1nzn=1(e1e2)(e1n=0+Sn(A3)e1nzne2n=0+Sn(A3)e2nzn)=e1(n=0+Sn(A3)e2nzn)e2(n=0+Sn(A3e1nzn)(e1e2)(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)=n=0+Sn(A3)e1e2ne2e1n(e1e2)zn(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)=1e1e2n=2+Sn(A3)Sn2(e1+e2)zn(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)=1e1e2(S2(A3)z2+S3(A3)S1(e1+e2)z3)(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)=1e1e2S2(A3)z2e12e2S3(A3)z3e1e22S3(A3)z3(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)

This completes the proof. □

LEMMA 3

Given an alphabet E2 = {e2, e3}, we have

πe2e3(1n=0+Sn(A3)e2nzn)=1e2e3(S2(A3)z2S3(A3)S1(e2+e3)z3)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn).

Proof. We have

πe2e3(1n=0+Sn(A3)e2nzn)=1e2e3(e2n=0+Sn(A3)e2nzne3n=0+Sn(A3)e3nzn)=(n=0+Sn(A3)e2e3ne3e2ne2e3zn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=1e2e3n=2+Sn(A3)Sn2(e2+e3)zn(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=1e2e3S2(A3)z2e2e3S3(A3)S1(e2+e3)z3(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn).

This completes the proof. □

LEMMA 4.

Given an alphabet E2 = {e2, e3}, we have

πe2e3(e2n=0+Sn(A3)e2nzn)=(e2+e3)+e2e3S1(A3)ze22e32S3(A3)z3(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)

Proof. We have

πe2e3(e2n=0+Sn(A3)e2nzn)=1e2e3(e22n=0+Sn(A3)e2nzne32n=0+Sn(A3)e3nzn)=(n=0+Sn(A3)e22e3ne32e2ne2e3n)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=(e2+e3)+e2e3S1(A3)ze22e33n=3+Sn(A3)Sn3(e2+e3)zn(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=(e2+e3)+e2e3S1(A3)ze22e32S3(A3)z3(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)

This completes the proof. □

LEMMA 5

Given an alphabet E2 = {e2, e3}, we have

πe2e3(e22n=0+Sn(A3)e2nzn)=((e2+e3)2e2e3)+e2e3(e2+e3)S1(A3)z+e22e32S2(A3)z2(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn).

Proof. We have

πe2e3(e22n=0+Sn(A3)e2nzn)=1e2e3(e23n=0+Sn(A3)e2nzne33n=0+Sn(A3)e3nzn)=(n=0+Sn(A)e23e3ne33e2ne2e3zn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=((e2+e3)2e2e3)+e2e3(e2+e3)S1(A3)z+e22e32S2(A3)z2e23e33n=4+Sn(A3)Sn4(e2+e3)zn(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)=((e2+e3)2e2e3)+e2e3(e2+e3)S1(A3)z+e22e32S2(A3)z2(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn).

This completes the proof. □

In this part, we are now in a position to provide Theorem 1. Also, we derive the new generating functions of the products of some known numbers and polynomials.

THEOREM 1

Let A3and E3be two alphabets defined respectively by {a1, a2, a3} and {e1, e2, e3}. Then we have

(3.1)n=0+Sn(A3)Sn(E3)zn=P1(z)D1(z),
with
P1(z)=1S2(A3)S2(E3)z2+[S3(A3)(S2(E3)S1(E3)2S3(E3))+S1(A3)S3(E3)]z3S1(A3)S1(E3)S3(A3)S3(E3)z4+S32(A3)S32(E3)z6,
and
D1(z)=(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn).

Proof. We have

n=0+Sn(A3)e1nzn=1n=0+Sn(A3)e1nzn.

Action the operator πe2e3πe1e2 on the identity above gives us

πe2e3πe1e2n=0+Sn(A3)e1nzn=πe2e3πe1e21n=0+Sn(A3)e1nzn.

Lemmas 1 and 2 then allow us to write

n=0+Sn(A3)Sn(E3)zn=[πe2e3(n=0+Sn(A3)e2nzn)1(e1S2(A3)z2+e12S3(A3)z3)πe2ϵ3e2(n=0+Sn(A3)e2nzn)1e1S3(A3)z3πe2e3e22(n=0+Sn(A3)e2nzn)1][n=0+Sn(A3)e1nzn]1

after the Lemmas 3, 4, and 5, we obtain

n=0+Sn(A3)Sn(E3)zn=[1e2e3(S2(A3)z2+S3(A3)S1(e2+e3)z3)(e1S2(A3)z2+e12S3(A3)z3)((e2+e3)+e2e3S1(A3)ze22e32S3(A3)z3)e1S3(A3)z3[S2(e2+e3)+e2e3S1(A3)S1(e2+e3)z+e22e32S2(A3)z2]]×[(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)]1

By reorganizing the numerator according to the powers of z, we obtain

n=0+Sn(A3)Sn(E3)zn=[1S2(A3)(e1e2+e1e3+e2e3)z2(S3(A3)(e22e3+e2e32+e12e2+e12e3+e1e22+e1e32+e1e2e3)+e1e2e3S1(A3))z3S1(A3)S3(A3)(e12e2e3+e1e22e3+e1e2e32)z4+e12e22e32S32(A3)z6]×[(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)]1

we will have

n=0+Sn(A3)Sn(E3)zn=P1(z)D1(z).

Thus, this completes the proof. □

Based on the relation (3.1), we have

(3.2)n=0+Sn1(A3)Sn1(E3)zn=P2(z)D1(z),

with

P2(z)=zS2(A3)S2(E3)z3+[S3(A3)(S2(E3)S1(E3)2S3(E3))+S1(A3)S3(E3)]z4S1(A3)S1(E3)S3(A3)S3(E3)z5+S32(A3)S32(E3)z7.
(3.3)n=0+Sn2(A3)Sn2(E3)zn=P3(z)D1(z),

with

P3(z)=z2S2(A3)S2(E3)z4+[S3(A3)(S2(E3)S1(E3)2S3(E3))+S1(A3)S3(E3)]z5S1(A3)S1(E3)S3(A3)S3(E3)z6+S32(A3)S32(E3)z8.

THEOREM 2

Let A3 = {a1, a2, a3} and E3 = {e1, e2, e3} be two alphabets. Then we have

(3.4)n=0+Sn(A3)Sn1(E3)zn=P4(z)D1(z),
with
P4(z)=S1(A3)z+S2(A3)S1(E3)z2S3(A3)[S12(E3)S2(E3)]z3+[S1(A3)S3(A3)S3(E3)S22(A3)S3(E3)]z4+S2(A3)S3(A3)S1(E3)S3(E3)z5S32(A3)S2(E3)S3(E3)z6.

Proof. We have (see[16])

n=0+Sn(A3)Sn1(e1+e2)zn=S1(A3)z(e1+e2)S2(A3)z2((e1+e2)2e1e2)S3(A3)z3(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn).

Suffices to apply the operator πe2e3 to the identity above, we obtain

πe2e3n=0+Sn(A3)Sn1(e1+e2)zn=πe2e3S1(A3)z(e1+e2)S2(A3)z2((e1+e2)2e1e2)S3(A3)z3(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn),n=0+Sn(A3)πe2e3Sn1(e1+e2)zn=e2S1(A3)z(e1+e2)S2(A3)z2((e1+e2)2e1e2)S3(A3)z3(e2e3)(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)e3S1(A3)z(e1+e3)S2(A3)z2((e1+e3)2e1e3)S3(A3)z3(e2e3)(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e3nzn)n=0+Sn(A3)Sn1(e1+e2+e3)zn=[(e2e3)S1(A3)z(e2e3)(e1+e2+e3)S2(A3)z2(e2e3)S3(A3)((e1+e2+e3)2(e1e2+e1e3+e2e3))z3(e2e3)e1e2e3(S1(A3)S3(A3)S22(A3))z4+(e2e3)e1e2e3(e1+e2+e3)S2(A3)S3(A3)z5+(e2e3)e1e2e3(e1e3+e1e2+e2e3)S32(A3)z6]×[(e2e3)(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)]1n=0+Sn(A3)Sn1(E3)zn=[S1(A3)z+S2(A3)S1(E3)z2S3(A3)(S12(E3)S2(E3))z3+S3(E3)(S1(A3)S3(A3)S22(A3))z4+S2(A3)S3(A3)S1(E3)S3(E3)z5S32(A3)S2(E3)S3(E3)z6]×[(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn)(n=0+Sn(A3)e3nzn)]1

Therefore

n=0+Sn(A3)Sn1(E3)zn=P4(z)D1(z).

This completes the proof. □

From (3.4) we conclude the following relationships

(3.5)n=0+Sn1(A3)Sn2(E3)zn=P5(z)D1(z),

with

P5(z)=S1(A3)z2+S2(A3)S1(E3)z3S3(A3)[S12(E3)S2(E3)]z4+[S1(A3)S3(A3)S3(E3)S22(A3)S3(E3)]z5+S2(A3)S3(A3)S1(E3)S3(E3)z6S32(A3)S2(E3)S3(E3)z7.

THEOREM 3

Let A3and E3be two alphabets, defined by {a1, a2, a3}, {e1, e2, e3}, respectively. Then we have

(3.6)n=0+Sn1(A3)Sn(E3)zn=P6(z)D1(z),
with
P6(z)=S1(E3)z+S1(A3)S2(E3)z2S3(E3)(S12(A3)S2(A3))z3S3(A3)(S22(E3)S1(E3)S3(E3))z4+S1(A3)S3(A3)S2(E3)S3(E3)z5S32(E3)S2(A3)S3(A3)z6.

Proof. By the same method given in Theorem 2, the proof can be easily made. □

Based to the relation (3.6), we obtain

(3.7)n=0+Sn2(A3)Sn1(E3)zn=P7(z)D1(z),

with

P7(z)=S1(E3)z2+S1(A3)S2(E3)z3S3(E3)(S12(A3)S2(A3))z4S3(A3)(S22(E3)S1(E3)S3(E3))z5+S1(A3)S3(A3)S2(E3)S3(E3)z6S32(E3)S2(A3)S3(A3)z7.

THEOREM 4

Let A3 = {a1, a2, a3} and E3 = {e1, e2, e3} be two alphabets. Then we have

(3.8)n=0+Sn2(A3)Sn(E3)zn=P8(z)D1(z),
with
P8(z)=(S12(E3)S2(E3))z2S1(A3)(S1(E3)S2(E3)S3(E3))z3+[S12(A3)S1(E3)S3(E3)+S2(A3)(S22(E3)2S1(E3)S3(E3))]z4S2(E3)S3(E3)[S1(A3)S2(A3)S3(A3)]z5+[S22(A)S1(A3)S3(A3)]S32(E3)z6.

Proof. We have (see [16])

n=0+Sn2(A3)Sn(e1+e2)zn=((e1+e2)2e1e2)z2+e1e2(e1+e2)S1(A3)z3+e12e22S2(A3)z4(n=0+Sn(A3)e1nzn)(n=0+Sn(A3)e2nzn).

By following the same demonstration steps as those of identity (3.4), we get (3.8). □

From (3.8), we have

(3.9)n=0+Sn(A3)Sn2(E3)zn=P9(z)D1(z),

with

P9(z)=(S12(A3)S2(A3))z2S1(E3)(S1(A3)S2(A3)S3(A3))z3+[S12(E3)S1(A3)S3(A3)+S2(E3)(S22(A3)2S1(A3)S3(A3))]z4S2(A3)S3(A3)[S1(E3)S2(E3)S3(E3)]z5+[S22(E)S1(E3)S3(E3)]S32(A3)z6,

and

D1(z)=1[S1(E3)S1(A3)+S2(E3)S12(A3)]z+[S2(A3)S12(E3)2S2(E3)S2(A3)]z2[S13(E3)S3(A3)+S3(E3)(S13(A3)6S3(A3))+(S1(A3)S2(A3)3S3(A3))(S1(E3)S2(E3)3S3(E3))]z3+[S3(E3)S1(E3)S2(A3)S12(A3)+(S22(A3)2S3(A3)S1(A3))(S22(E3)2S3(E3)S1(E3))+S3(A3)S1(A3)(S12(E3)S2(E3)5S3(E3)S1(E3))]z4[S3(E3)S2(E3)(S1(A3)S22(A3)+2S3(A3)S1(A3)S3(A3)S2(A3))+S3(E3)S12(E3)(S3(A3)S12(A3)2S3(A3)S2(A3))+S1(E3)S2(E3)S2(A3)S3(A3)]z5+[S32(E3)S23(A3)+S3(E3)S3(A3)(S1(A3)S2(A3)3S3(A3))×(S1(E3)S2(E3)3S3(E3))+S32(A3)(S23(E3)6S32(E3))]z6[S32(E3)S1(E3)S3(A3)(S22(A3)2S3(A3)S1(A3))+S32(A3)S1(A3)S3(E3)S2(E3)]z7+S32(E3)S2(E3)S32(A3)S2(A3)z8S33(E3)S33(A3)z9.

4. Applications

All the identities appearing in the following section are corollaries of (3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8) and (3.9).

4.1. Generating functions of square of some known numbers

In this part, we now derive the new generating functions of the square of some known numbers. This case consists of four related parts. Firstly, the substitutions

{S1(A3)=1S2(A3)=1S3(A3)=1and{S1(E3)=1S2(E3)=1S3(E3)=1

in (3.1)–(3.5) and (3.9), we have

(4.1)n=0+Sn(A3)Sn(E3)zn=1z22z3z4+z61z4z212z36z44z5+8z6+2z7+z8z9,
(4.2)n=0+Sn1(A3)Sn1(E3)zn=zz32z4z5+z71z4z212z36z44z5+8z6+2z7+z8z9,
(4.3)n=0+Sn2(A3)Sn2(E3)zn=z2z42z5z6+z81z4z212z36z44z5+8z6+2z7+z8z9,
(4.4)n=0+Sn(A3)Sn1(E3)zn=z+z2+2z3+z5z61z4z212z36z44z5+8z6+2z7+z8z9,
(4.5)n=0+Sn1(A3)Sn2(E3)zn=z2+z4+2z5+z6z71z4z212z36z44z5+8z6+2z7+z8z9,
(4.6)n=0+Sn(A3)Sn2(E3)zn=2z2+2z3+2z42z51z4z212z36z44z5+8z6+2z7+z8z9.

Then, we have the following proposition and theorem.

PROPOSITION 3

For n ∈ ℕ, the new generating function of the square of Tribonacci numbers is given by

n=0+Tn2zn=1z22z3z4+z61z4z212z36z44z5+8z6+2z7+z8z9.

We can state the following corollary.

COROLLARY 2

The following identity holds true:

Tn2=Sn(A3)Sn(E3).

THEOREM 5

For n ∈ ℕ, the new generating function of the square of Tribonacci Lucas numbers is given by

n=0+Kn2zn=98z28z254z322z46z5+25z6+z81z4z212z36z44z5+8z6+2z7+z8z9.

Proof. In [10], we have Kn = 3Sn(A3) – 2Sn–1(A3) – Sn–2(A3), then we see that

n=0+Kn2zn=n=0+[3Sn(A3)2Sn1(A3)Sn2(A3)][3Sn(E3)2Sn1(E3)Sn2(E3)]zn=9n=0+Sn(A3)Sn(E3)zn+4n=0+Sn1(A3)Sn1(E3)zn+n=0+Sn2(A3)Sn2(E3)zn12n=0+Sn(A3)Sn1(E3)zn6n=0+Sn(A3)Sn2(E3)zn+4n=0+Sn1(A3)Sn2(E3)zn=9n=0+Tn2zn+4n=0+Sn1(A3)Sn1(E3)zn+n=0+Sn2(A3)Sn2(E3)zn12n=0+Sn(A3)Sn1(E3)zn6n=0+Sn(A3)Sn2(E3)zn+4n=0+Sn1(A3)Sn2(E3)zn.

By using (4.1)–(4.6), we obtain

n=0+Kn2zn=98z28z254z322z46z5+25z6+z81z4z212z36z44z5+8z6+2z7+z8z9,

which completes the proof of this theorem. □

Secondly, let us now consider the following conditions for Eqs. (3.1)–(3.5) and (3.9):

{S1(A3)=1S2(A3)=1S3(A3)=2and{S1(E3)=1S2(E3)=1S3(E3)=2.

Then it yields

(4.7)n=0+Sn(A3)Sn(E3)zn=1z28z34z4+16z61z4z229z315z416z5+92z6+32z7+16z864z9,
(4.8)n=0+Sn1(A3)Sn1(E3)zn=zz38z44z5+16z71z4z229z315z416z5+92z6+32z7+16z864z9,
(4.9)n=0+Sn2(A3)Sn2(E3)zn=z2z48z54z6+16z81z4z229z315z416z5+92z6+32z7+16z864z9,
(4.10)n=0+Sn(A3)Sn1(E3)zn=z+z2+4z32z4+4z58z61z4z229z315z416z5+92z6+32z7+16z864z9,
(4.11)n=0+Sn1(A3)Sn2(E3)zn=z2+z3+4z42z5+4z68z71z4z229z315z416z5+92z6+32z7+16z864z9,
(4.12)n=0+Sn(A3)Sn2(E3)zn=2z2+3z3+5z46z54z61z4z229z315z416z5+92z6+32z7+16z864z9.

Therefore, we state the following proposition and theorem.

PROPOSITION 4

For n ∈ ℕ, the new generating function of square of third order of Jacobsthal numbers is given by

n=0+(Jn(3))2zn=zz38z44z5+16z71z4z229z315z416z5+92z6+32z7+16z864z9.

We can state the following corollary.

COROLLARY 3

The following identity holds true:

(Jn(3))2=Sn1(A3)Sn1(E3).

THEOREM 6

For n ∈ ℕ, the new generating function of square of third order of Jacobsthal Lucas numbers is given by

n=0+(Jn(3))2zn=43z8z329z34z492z5+32z6+48z7+64z81z4z229z315z416z5+92z6+32z7+16z864z9.

Proof. By referred to [10], we have Jn(3)=2Sn(A3)Sn1(A3)+2Sn2(A3), then

n=0+(jn(3))2zn=n=0+[2Sn(A3)Sn1(A3)+2Sn2(A3)][2Sn(E3)Sn1(E3)+2Sn2(E3)]zn=4n=0+Sn(A3)Sn(E3)zn4n=0+Sn(A3)Sn1(E3)zn+8n=0+Sn(A3)Sn2(E3)zn4n=0+Sn1(A3)Sn2(E3)zn+n=0+Sn1(A3)Sn1(E3)zn+4n=0+Sn2(A3)Sn2(E3)zn=4n=0+Sn(A3)Sn(E3)zn4n=0+Sn(A3)Sn1(E3)zn+8n=0+Sn(A3)Sn2(E3)zn4n=0+Sn1(A3)Sn2(E3)zn+n=0+(Jn(3))2zn+4n=0+Sn2(A3)Sn2(E3)zn.

By using (4.7), (4.8), (4.9), (4.10), (4.11), and (4.12), we obtain

n=0+(Jn(3))2zn=43z+8z2+29z3+4z4100z5+32z6+48z7+64z81z4z229z315z416z5+92z6+32z7+16z864z9,

which completes the proof of this theorem. □

Thirdly, the substitutions

{S1(A3)=1S2(A3)=0S3(A3)=1and{S1(E3)=1S2(E3)=0S3(E3)=1

in (3.2), we obtain the following proposition.

PROPOSITION 5

For n ∈ ℕ, the new generating function of square of Narayana numbers is given by

n=0+Nn2zn=zz4z5+z71z5z3z4z5+3z6+2z7z9.

We can state the following corollary.

COROLLARY 4

The following identity holds true:

Nn2=Sn1(A3)Sn1(E3).

Fourthly, the substitutions

{S1(A3)=0S2(A3)=1S3(A3)=1and{S1(E3)=0S2(E3)=1S3(E3)=1

in (3.3) we deduce the following proposition.

PROPOSITION 6

For n ∈ ℕ, the new generating function of square of Padovan Perin numbers is given by

n=0+Sn2zn=z2z42z5+z812z23z3+z4+z5+z6+z8z9.

COROLLARY 5

The following identity holds true:

Sn2=Sn2(A3)Sn2(E3).

4.2. Generating functions of product of some known polynomials

In this part, we now derive the new generating functions of the product of some known polynomials. This case consists of three related parts. Firstly, let us now consider the following conditions for equations (3.1)–(3.9):

{S1(A3)=x2S2(A3)=xS3(A3)=1and{S1(E3)=y2S2(E3)=yS3(E3)=1.

Then it yields

(4.13)n=0+Sn(A3)Sn(E3)zn=1xyz2+(x2y32)z3x2y2z4+z6D2(z),
(4.14)n=0+Sn1(A3)Sn1(E3)zn=zxyz3+(x2y32)z4x2y2z5+z7D2(z),
(4.15)n=0+Sn2(A3)Sn2(E3)zn=z2xyz4+(x2y32)z5x2y2z6+z8D2(z),
(4.16)n=0+Sn(A3)Sn1(E3)zn=x2z+xy2z2+y(1+y3)z3+xy2z5yz6D2(z),
(4.17)n=0+Sn1(A3)Sn2(E3)zn=x2z2+xy2z3+(1+y3)yz4+xy2z6yz7D2(z),
(4.18)n=0+Sn1(A3)Sn(E3)zn=y2z+x2yz2+(1+x3)xz3+x2yz5xz6D2(z),
(4.19)n=0+Sn2(A3)Sn1(E3)zn=y2z2+x2yz3+(1+x3)xz4+x2yz6xz7D2(z),
(4.20)n=0+Sn2(A3)Sn(E3)zn=(1+y3)yz2+(1+y3)x2z3+xy2(1+x3)z4(1+x3)yz5D2(z),
(4.21)n=0+Sn(A3)Sn2(E3)zn=(1+x3)xz2+(1+x3)y2z3+(1+y3)x2yz4(1+y3)xz5D2(z),

with

D2(z)=1x2y2zxy(x3+y3+2)z2(x6+y6+x3y3+3x3+3y3+3)z3x2y2(x3+y3+4)z4+xy(x32x+1y2((x3+2)y+1))z5+(2y3+2x3+x3y3+3)z6+x2y(y+1)z7+xyz8z9.

Therefore, we state the following results.

PROPOSITION 7

Let n be a natural number. Then we have the new generating function for the product of Tribonacci polynomials:

n=0+Tn(x)Tn(y)zn=[1xyz2+(x2y32)z3x2y2z4+z6]×[1x2y2zxy(x3+y3+2)z2(x6+y6+x3y3+3x3+3y3+3)z3x2y2(x3+y3+4)z4+xy(x32x+1y2((x3+2)y+1))z5+(2y3+2x3+x3y3+3)z6+x2y(y+1)z7+xyz8z9]1.

We can state the following corollary.

COROLLARY 6

The following identity holds true:

Tn(x)Tn(y)=Sn(A3)Sn(E3).

THEOREM 7

Let n be a natural number. Then we have the new generating function for the product of Tribonacci Lucas polynomials:

n=0+Kn(x)Kn(y)zn=P10(z)D2(z),
and
P9(z)=98x2y2z7xy(2+x3+y3)z2+3(3x23x32x66y32y62x3y36)z3x2y2(20+5y3+x34x2)z4xy(4x3y3x2+4y3+3x34)z5+3(3+x3y3+2x3+2y3)z6+xyz8.

Proof. Recall that, we have (see [16]) Kn(x) = 3Sn(A3) – 2x2Sn–1(A3) – xSn–2(A3).

n=0+Kn(x)Kn(y)zn=n=0+[3Sn(A3)2x2Sn1(A3)xSn2(A3)]×[3Sn(E3)2y2Sn1(E3)ySn2(E3)]zn=9n=0+Sn(A3)Sn(E3)zn+4x2y2n=0+Sn1(A3)Sn1(E3)zn+xyn=0+Sn2(A3)Sn2(E3)zn6y2n=0+Sn(A3)Sn1(E3)zn3yn=0+Sn(A3)Sn2(E3)zn6x2n=0+Sn1(A3)Sn(E3)zn+2x2yn=0+Sn1(A3)Sn2(E3)zn3xn=0+Sn2(A3)Sn(E3)zn+2xy2n=0+Sn2(A3)Sn1(E3)zn=9n=0+Tn(x)Tn(y)zn+4x2y2n=0+Sn1(A3)Sn1(E3)zn+xyn=0+Sn2(A3)Sn2(E3)zn6y2n=0+Sn(A3)Sn1(E3)zn3yn=0+Sn(A3)Sn2(E3)zn6x2n=0+Sn1(A3)Sn(E3)zn+2x2yn=0+Sn1(A3)Sn2(E3)zn3xn=0+Sn2(A3)Sn(E3)zn+2xy2n=0+Sn2(A3)Sn1(E3)zn.

By using (4.13)–(4.21), we obtain

n=0+Kn(x)Kn(y)zn=P10(z)D2(z),

which completes the proof of this theorem. □

Secondly, the substitutions

{S1(A3)=1S2(A3)=xS3(A3)=x2and{S1(E3)=1S2(E3)=yS3(E3)=y2

in (3.1), we have the following proposition.

PROPOSITION 8

We have the following new generating function of the product of Tricobsthal polynomials:

n=0+Jn(3)(x)Jn(3)(y)zn=1xyz2+y(yx2(1+2y))z3x2y2z4+x4y4z6D3(z),
with
D3(z)=1z(x+y+2xy)z2(y2+x2+3x2y2+xy+3x2y+3xy2)z3xy(x+4xy+y)z4x2y(x+y+2xyxy2+y2)z5+x3y3(2x+2y+3xy+1)z6+x4y3(1+y)z7+x5y5z8x6y6z9.

COROLLARY 7

The following identity holds true:

Jn(3)(x)Jn(3)(y)=Sn(A3)Sn(E3).

Thirdly, the substitutions

{S1(A3)=xS2(A3)=αS3(A3)=γand{S1(E3)=yS2(E3)=αS3(E3)=γ

in (3.1), we get the following proposition.

PROPOSITION 9

Let n be a natural number. Then we have the new generating function for the product of 2-Chebyshev polynomials of first kind:

n=0+T^n(x)T^n(y)zn=1α2z2+γ(x2γ+αy)z3γ2xyz4+γ4z6D4(z),
with
D4(z)=1xyz+α(x2+y22α)z2(γy3+γx3+3γ2+α2xy3αγy3αγx)z3+(αγx2y+αγxy2γ2xy2α2γx2α2γy+α4)z4(αγx(α22γ)+γ2y2x2α2γ2+αγ2y(α2γ))z5+(2α3γ2+γ2(αy3γ)(αx3γ)6γ4)z6γ3(y(α22γx)+αx)z7+α2γ4z8γ6z9.

We can state the following corollary.

COROLLARY 8

The following identity holds true:

T^n(x)T^n(y)=Sn(A3)Sn(E3).

4.3. The case A3 = {1, 2, 3} and E3 = {1, 2, 3}

Let us now consider the following conditions for equations (3.1)–(3.5) and (3.9):

{S1(A3)=S1(E3)=6S2(A3)=S2(E3)=11S3(A3)=S3(E3)=6.

We have the following results.

PROPOSITION 10

For n ∈ ℕ, the new generating functions of Stirling numbers of the first kind is given by

n=0+(3n+2+122n+2)2zn=1121z2+360z31296z4+1296z6(1z)(12z)2(13z)2(14z)(16z)2(19z),n=0+(3n+1+122n+1)2zn=z121z3+360z41296z5+1296z7(1z)(12z)2(13z)2(14z)(16z)2(19z).

PROPOSITION 11

Let n be a natural number. Then we have the new generating functions of Stirling numbers of the first type:

n=0+(3n+2+122n)2zn=z121z4+360z51296z6+1296z8(1z)(14z)(19z)(12z)2(13z)2(16z)2,n=0+(3n+2+122n+2)2(3n+1+122n+1)zn=6z66z2+150z3510z42376z5+2376z6(1z)(14z)(19z)(12z)2(13z)2(16z)2.

PROPOSITION 12

For n ∈ ℕ, the new generating functions of Stirling numbers of the first type is given by

n=0+(3n+1+122n+1)(3n+122n)zn=6z266z3+150z4+510z52376z6+2376z7(1z)(14z)(19z)(12z)2(13z)2(16z)2,n=0+(3n+2+122n+2)(3n+122n)zn=25z2360z3+1835z43960z53060z6(1z)(14z)(19z)(12z)2(13z)2(16z)2.

4.4. The case A3 = {1, 1, 1} and E3 = {1, 1, 1}

Let us now consider the following conditions for equations (3.1)–(3.5) and (3.9):

{S1(A3)=S1(E3)=3S2(A3)=S2(E3)=3S3(A3)=S3(E3)=1.

Using the same procedure, we obtain the new generating functions:

n=0+(2n+1n)2zn=19z2+10z39z4+z619z+36z284z3+126z4126z5+84z636z7+9z8z9,n=0+(2nn1)2zn=z9z3+10z49z5+z719z+36z284z3+126z4126z5+84z636z7+9z8z9,n=0+(2n1n2)2zn=z29z4+10z59z6+z819z+36z284z3+126z4126z5+84z636z7+9z8z9,n=0+(2n+1n)(2nn1)zn=3z9z2+6z3+6z49z5+3z619z+36z284z3+126z4126z5+84z636z7+9z8z9,n=0+(2nn1)(2n1n2)zn=3z29z3+6z4+6z59z6+3z719z+36z284z3+126z4126z5+84z636z7+9z8z9,n=0+(2n+1n1)(2n1n2)zn=6z224z3+36z424z5+6z619z+36z284z3+126z4126z5+84z636z7+9z8z9.

4.5. The case A3 = {1, 1, 1} and E3 = {1, 2, 3}

Let us now consider the following conditions for equations (3.1)–(3.9) :

{S1(A3)=3S2(A3)=3S3(A3)=1and{S1(E3)=6S2(E3)=11S3(E3)=6.

We have the following propositions.

PROPOSITION 13

For n ∈ ℕ, the new generating functions is given by

n=0+(2n+1n)(3n+2+122n+2)zn=133z2+72z3108z4+36z6118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9,n=0+(2nn1)(3n+1+122n+1)zn=z33z3+72z4108z5+36z7118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9.

PROPOSITION 14

Let n be a natural number. Then we have the new generating functions

n=0+(2n1n2)(3n+122n)zn=z233z4+72z5108z6+36z8118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9,n=0+(2n+1n)(3n+1+122n+1)zn=3z18z2+25z3+36z4108z5+66z6118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9.

PROPOSITION 15

For n ∈ ℕ, it is given the new generating functions by

n=0+(2nn1)(3n+2+122n+2)zn=6z33z2+36z3+85z4198z5+108z6118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9,n=0+(2n1n2)(3n+1+122n+1)zn=6z233z3+36z4+85z5198z6+108z7118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9.

PROPOSITION 16

Let n be a natural number. Then we have the new generating functions

n=0+(2n1n2)(3n+2+122n+2)zn=25z2108z3+471z4528z5+216z6118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9,n=0+(2n+1n)(3n+1+122n)zn=6z248z3+141z4180z5+85z6118z+141z2630z3+1767z42034z5+3815z6846z7+1188z8216z9.

5. Conclusion

In this paper, we have derived new theorems in order to determine new generating functions of some numbers and 2-orthogonal polynomials. The derived theorems and corollaries are based on symmetric functions.


This work was supported by Directorate General for Scientific Research and Technological Development (DGRSDT), Algeria.

(Communicated by Istvàn Gaàl)


Acknowledgement

Authors are grateful to the Editor-In-Chief of the Journal and the anonymous reviewers for their constructive comments which improved the quality and the presentation of the paper.

References

[1] [1] BOUSSAYOUD, A.: Complete symmetric functions and generating functions, Nonlinear Studies 27 (2020), 149–166.Search in Google Scholar

[2] [2] BOUSSAYOUD, A.—KERADA, M.—BOULYER, M.: A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math. 108 (2016), 503–511.Search in Google Scholar

[3] [3] BOUBELLOUTA, KH.—BOUSSAYOUD, A.—KERADA, M.: Symmetric functions for second-order recurrence sequences, Tbilisi Math. J. 12 (2020), 225–237.10.32513/tbilisi/1593223230Search in Google Scholar

[4] [4] BOUBELLOUTA, KH.—BOUSSAYOUD, A.—ARACI, S.—KERADA, M.: Some theorems on generating functions and their applications, Adv. Stud. Contemp. Math. (Kyungshang) 30 (2020), 307–324.Search in Google Scholar

[5] [5] BOUGHABA, S.—BOUSSAYOUD, A.—KERADA, M.: A new class of generating functions of binary products of Gaussian numbers and polynomials, Commun. Fac. Sci. Univ. Ankara, Ser. A1, Math. Stat. 69 (2020), 246–261.10.31801/cfsuasmas.597653Search in Google Scholar

[6] [6] BOUGHABA, S.—BOUSSAYOUD, A.—SABA, N.: Generating functions of the products of bivariate complex Fibonacci polynomials with Gaussian numbers and polynomials, Discuss. Math. – Gen. Algebra Appl. 40 (2020), 245–265.10.7151/dmgaa.1335Search in Google Scholar

[7] [7] BOUGHABA, S.—BOUSSAYOUD, A.—KERADA, M.: Construction of symmetric functions of generalized Fibonacci numbers, Tamap Journal of Mathematics and Statistics 3 (2019), 1–7.Search in Google Scholar

[8] [8] BEN CHEIKH, Y.—BEN ROMHANE, N.: d-orthogonal polynomials sets of Tchebytchev type. In: Proceedings of the International Conference on Difference Equations, Special Functions and Orthogonal Polynomials, S. Elaydi et al. (Ed.), Munich, Germany, July 2005, World Scientific.Search in Google Scholar

[9] [9] CERECEDA, J. L.: Determinantal representations for generalized Fibonacci and Tribonacci numbers, Int. J. Contemp. Math. Sci. 9(6) (2014), 269–285.10.12988/ijcms.2014.4323Search in Google Scholar

[10] [10] CHELGHAM, M.—BOUSSAYOUD, A.: Construction of symmetric functions of generalized Tribonacci numbers, J. Sci. Technol. Arts 50 (2020), 65–74.Search in Google Scholar

[11] [11] DOUAK, K.—MARONI, P.: On d-orthogonal Tchebychev polynomials. I, Appl. Numer Math. 24 (1997), 23–53.10.1016/S0168-9274(97)00006-8Search in Google Scholar

[12] [12] DIDKIVSKA, T. V.—STOPOCHKINA, M. V.: Properties of Fibonacci–Narayana numbers, World Math. 9 (2003), 29–36.Search in Google Scholar

[13] [13] FEINBERG, M.: Fibonacci-Tribonacci, Fibonacci Quart. 1 (1963), 70–74.Search in Google Scholar

[14] [14] KIZILATES, C.—DU, W.-S.—QI, F.: Several determinantal expressions of generalized Tribonacci polynomials, Tamkang J. Math. (2021).10.22541/au.159474102.22328885Search in Google Scholar

[15] [15] LASCOUX, A.: Inversion des matrices de Hankel, Linear Algebra Appl. (1990), 77–102.10.1016/0024-3795(90)90299-RSearch in Google Scholar

[16] [16] MERZOUK, H.—BOUSSAYOUD, A.—CHELGHAM, M.: Generating functions of generalized Tibonacci and Tricobsthal polynomials, Montes Taurus J. Pure Appl. Math. 2 (2020), 7–37.10.12691/tjant-7-5-2Search in Google Scholar

[17] [17] MERZOUK, H.—ALOUI, B.—BOUSSAYOUD, A.: Generating functions of the product of 2-orthogonal Chebyshev polynomials with some numbers and the other Chebyshev polynomials, Probl. Anal. Issues. Anal. 10(28) (2021), 17 pp.10.15393/j3.art.2021.8530Search in Google Scholar

[18] [18] MACDONALD, I.G.: Symetric Functions and Hall Polynomials. Oxford Math. Monograph, 1979.Search in Google Scholar

[19] [19] MESQUITA, T. A.—MACEDO, A.: Chebyshev polynomials via quadratic and cubic decompositions of the canonical sequence, Integral Transforms Spec. Funct. 26(12) (2015), 956–970.10.1080/10652469.2015.1073274Search in Google Scholar

Received: 2020-12-16
Accepted: 2021-02-11
Published Online: 2022-02-16
Published in Print: 2022-02-16

© 2022 Mathematical Institute Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0002/html
Scroll to top button