Abstract
A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n-heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n-heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was funded by Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation under grant number CMMI 1826030.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abbott, S. (2017). Surfactant science: principles & practice. DEStech Publications, Inc., Lancaster.Search in Google Scholar
Akimov, Y.K. (2003). Fields of application of aerogels (review). Instrum. Exp. Tech. 46: 287–299, https://doi.org/10.1023/A:1024401803057.10.1023/A:1024401803057Search in Google Scholar
Androva, N.A., Bessonov, M.I., Laius, L.A., and Rudakov, A.P. (1970). Polyimides: a new class of thermally stable polymers. Prog. Mater. Sci. Ser. 7: 13–57.Search in Google Scholar
Baetens, R., Jelle, B.P., and Gustavsen, A. (2011). Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43: 761–769, https://doi.org/10.1016/j.enbuild.2010.12.012.Search in Google Scholar
Barbetta, A. and Cameron, N.R. (2004). Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant. Macromolecules 37: 3188–3201, https://doi.org/10.1021/ma0359436.Search in Google Scholar
Bessonov, M.I., Koton, M.M., Kudryavtsev, V.V., and Lauis, L.A. (1987). Polyimides, thermally stable polymers. Plenum, New York.10.1007/978-1-4615-7634-1Search in Google Scholar
Bhumgara, Z. (1995). Polyhipe foam materials as filtration media. Filtr. Sep. 32: 245–251, https://doi.org/10.1016/S0015-1882(97)84048-7.Search in Google Scholar
Braun, R.D. and Manning, R.M. (2007). Mars exploration entry, descent, and landing challenges. J. Spacecraft Rockets 44: 310–323, https://doi.org/10.2514/1.25116.Search in Google Scholar
Brinker, C.J. and Scherer, G. (1990). Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York, pp. 96–233.10.1016/B978-0-08-057103-4.50008-8Search in Google Scholar
Cashman, J.L., Nguyen, B.N., Dosa, B., and Meador, M.A.B. (2020). Flexible polyimide aerogels derived from the use of a neopentyl spacer in the backbone, ACS Appl. Polym. Mater. 2: 2179–2189, https://doi.org/10.1021/acsapm.0c00153.Search in Google Scholar
Daniel, C., Sannino, D., and Guerra, G. (2008). Syndiotactic polystyrene aerogels: adsorption in amorphous pores and absorption in crystalline nanocavities. Chem. Mater. 20: 577–582, https://doi.org/10.1021/cm702475a.Search in Google Scholar
Duan, Y., Jana, S.C., Lama, B., and Espe, M. (2013). Reinforcement of silica aerogels using silane end-capped polyurethanes. Langmuir 29: 6156–6165, https://doi.org/10.1021/la4007394.Search in Google Scholar
Duan, Y., Jana, S.C., Reinsel, A.M., Lama, B., and Espe, M.P. (2012). Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28: 15362−15371, https://doi.org/10.1021/la302945b.Search in Google Scholar
Fesmire, J.E. and Sass, J.P. (2008). Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 48: 223–231, https://doi.org/10.1016/j.cryogenics.2008.03.014.Search in Google Scholar
Forest, L., Gibiat, V., and Hooley, A. (2001). Impedance matching and acoustic absorption in granular layers of silica aerogels. J. Non-Cryst. Solids 285: 230–235, https://doi.org/10.1016/s0022-3093(01)00458-6.Search in Google Scholar
Grace, H.P. (1982). Dispersion phenomena in high viscosity fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14: 225–277, https://doi.org/10.1080/00986448208911047.Search in Google Scholar
Gu, S., Li, Z., Miyoshi, T., and Jana, S.C. (2015). Polybenzoxazine aerogels with controllable pore structures. RSC Adv. 5: 26801–26805, https://doi.org/10.1039/C5RA02635K.Search in Google Scholar
Gu, S., Zhai, C., and Jana, S.C. (2016). Aerogel microparticles from oil-in-oil emulsion systems. Langmuir 32: 5637–5645, https://doi.org/10.1021/acs.langmuir.6b01043.Search in Google Scholar PubMed
Guo, H., Meador, M.A.B., Cashman, J.L., Tresp, D., Dosa, B., Scheiman, D.A., and McCorkle, L.S. (2020). Flexible polyimide aerogels with dodecane links in the backbone structure. ACS Appl. Mater. Interfaces 12: 33288–33296, https://doi.org/10.1021/acsami.0c09321.Search in Google Scholar PubMed
Guo, H., Meador, M.A.B., McCorkle, L., Quade, D.J., Guo, J., Hamilton, B., Cakmak, M., and Sprowl, G. (2011). Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3: 546–552, https://doi.org/10.1021/am101123h.Search in Google Scholar PubMed
Jones, S.M. (2006). Aerogel: space exploration applications. J. Sol. Gel Sci. Technol. 40: 351–357, https://doi.org/10.1007/s10971-006-7762-7.Search in Google Scholar
Joo, P., Yao, Y., Teo, N., and Jana, S.C. (2021). Modular aerogel brick fabrication via 3D-printed molds. Addit. Manuf. 46: 102059, https://doi.org/10.1016/j.addma.2021.102059.Search in Google Scholar
Kawagishi, K., Saito, H., Furukawa, H., and Horie, K. (2007). Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol. Rapid Commun. 28: 96–100, https://doi.org/10.1002/marc.200600587.Search in Google Scholar
Kim, S.J., Chase, G., and Jana, S.C. (2015). Polymer aerogels for efficient removal of airborne nanoparticles. Sep. Purif. Technol. 156: 803–808, https://doi.org/10.1016/j.seppur.2015.11.005.Search in Google Scholar
Kim, S.J., Chase, G., and Jana, S.C. (2016). The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Sep. Purif. Technol. 166: 48–54, https://doi.org/10.1016/j.seppur.2016.04.017.Search in Google Scholar
Kim, S.J., Raut, P., Jana, S.C., and Chase, G. (2017). Electrostatically active polymer hybrid aerogels for airborne nanoparticle filtration. ACS Appl. Mater. Interfaces 9: 6401–6410, https://doi.org/10.1021/acsami.6b14784.Search in Google Scholar
Kistler, S.S. (1932). Coherent expanded aerogels. J. Phys. Chem. 36: 52–64, https://doi.org/10.1021/j150331a003.Search in Google Scholar
Kistler, S.S. (1935). The relation between heat conductivity and structure in silica aerogel. J. Phys. Chem. 39: 79–87, https://doi.org/10.1021/j150361a006.Search in Google Scholar
Kocon, L., Despetis, F., and Phalippou, J. (1998). Ultralow density silica aerogels by alcohol supercritical drying. J. Non-Cryst. Solids 225: 96–100, https://doi.org/10.1016/s0022-3093(98)00322-6.Search in Google Scholar
Kulkarni, A. and Jana, S.C. (2021). Surfactant-free syndiotactic polystyrene aerogel foams via pickering emulsion. Polymer 212: 123125, https://doi.org/10.1016/j.polymer.2020.123125.Search in Google Scholar
Lee, J.K., Gould, G.L., and Rhine, W. (2009). Polyurea based aerogel for a high performance thermal insulation material. J. Sol. Gel Sci. Technol. 49: 209–220, https://doi.org/10.1007/s10971-008-1861-6.Search in Google Scholar
Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Mulik, S., Larimore, Z.J., Lu, H., Churu, G., and Mang, J.T. (2010). Multifunctional polyurea aerogels from isocyanates and water. A structure−property case study. Chem. Mater. 22: 6692–6710, https://doi.org/10.1021/cm102891d.Search in Google Scholar
Lin, W.-H. and Jana, S.C. (2021). Analysis of porous structures of cellulose aerogel monoliths and microparticles. Microporous Mesoporous Mater. 310: 110625, https://doi.org/10.1016/j.micromeso.2020.110625.Search in Google Scholar
Mahadik-Khanolkar, S., Donthula, S., Sotiriou-Leventis, C., and Leventis, N. (2014). Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem. Mater. 26: 1303–1317, https://doi.org/10.1021/cm403483p.Search in Google Scholar
Mawhinney, K. and Jana, S.C. (2019). Design of emulsion-templated mesoporous–macroporous polyurea gels and aerogels. ACS Appl. Polym. Mater. 1: 3115–3129, https://doi.org/10.1021/acsapm.9b00762.Search in Google Scholar
Mccusker, L.B., Liebau, F., and Engelhardt, G. (2001). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001). Pure Appl. Chem. 73: 381–394, https://doi.org/10.1351/pac200173020381.Search in Google Scholar
Meador, M.A.B. (2014). Polyimide aerogels with three-dimensional cross-linked structure, US9309369B1.Search in Google Scholar
Meador, M.A.B., Agnello, M., McCorkle, L., Vivod, S.L., and Wilmoth, N. (2016). Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl. Mater. Interfaces 8: 29073–29079, https://doi.org/10.1021/acsami.6b10248.Search in Google Scholar PubMed
Meador, M.A.B., Alemán, C.R., Hanson, K., Ramirez, N., Vivod, S.L., Wilmoth, N., and McCorkle, L. (2015). Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl. Mater. Interfaces 7: 1240–1249, https://doi.org/10.1021/am507268c.Search in Google Scholar PubMed
Meador, M.A.B., Malow, E.J., Silva, R., Wright, S., Quade, D., Vivod, S.L., Guo, H., Guo, J., and Cakmak, M. (2012). Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl. Mater. Interfaces 4: 536–544, https://doi.org/10.1021/am2014635.Search in Google Scholar PubMed
Meador, M.A.B., McMillon, E., Sandberg, A., Barrios, E., Wilmoth, N.G., Mueller, C.H., and Miranda, F.A. (2014). Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl. Mater. Interfaces 6: 6062–6068, https://doi.org/10.1021/am405106h.Search in Google Scholar PubMed
Meador, M.A.B., Scherzer, C.M., Vivod, S.L., Quade, D., and Nguyen, B.N. (2010). Epoxy reinforced aerogels made using a streamlined process. ACS Appl. Mater. Interfaces 2: 2162–2168, https://doi.org/10.1021/am100422x.Search in Google Scholar
Menner, A. and Bismarck, A. (2006). New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why PolyHIPEs have an interconnected pore network structure. Macromol. Symp. 242: 19–24, https://doi.org/10.1002/masy.200651004.Search in Google Scholar
Menner, A., Haibach, K., Powell, R., and Bismarck, A. (2006). Tough reinforced open porous polymer foams via concentrated emulsion templating. Polymer 47: 7628–7635, https://doi.org/10.1016/j.polymer.2006.09.022.Search in Google Scholar
Molau, G.E. (1965). Heterogeneous polymer systems. II. Mechanism of stabilization of polymeric oil-in-oil emulsions. J. Polym. Sci. A Gen. Pap. 3: 4235–4242, https://doi.org/10.1002/pol.1965.100031219.Search in Google Scholar
Mosanenzadeh, S.G., Saadatnia, Z., Karamikamkar, S., Park, C.B., and Naguib, H.E. (2020). Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Adv. 10: 22909–22920, https://doi.org/10.1039/d0ra03907a.Search in Google Scholar
Nekouei, M. and Vanapalli, S.A. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: influence of viscosity ratio on droplet size. Phys. Fluids 29: 032007, https://doi.org/10.1063/1.4978801.Search in Google Scholar
Pajonk, G. (1991). Aerogel catalysts. Appl. Catal. 72: 217–266, https://doi.org/10.1016/0166-9834(91)85054-y.Search in Google Scholar
Pandit, N., Trygstad, T., Croy, S., Bohorquez, M., and Koch, C. (2000). Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. J. Colloid Interface Sci. 222: 213–220, https://doi.org/10.1006/jcis.1999.6628.Search in Google Scholar
Pantoja, M., Boynton, N., Cavicchi, K.A., Dosa, B., Cashman, J.L., and Meador, M.A.B. (2019). Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl. Mater. Interfaces 11: 9425–9437, https://doi.org/10.1021/acsami.8b20420.Search in Google Scholar
Randall, J.P., Meador, M.A.B., and Jana, S.C. (2011). Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interfaces 3: 613–626, https://doi.org/10.1021/am200007n.Search in Google Scholar
Richardson, J.F. and Zaki, W.N. (1954). Sedimentation and fluidisation: part 1. Chem. Eng. 32: 35–53.10.1016/S0263-8762(97)80006-8Search in Google Scholar
Shinko, A., Jana, S.C., and Meador, M.A. (2015). Crosslinked polyurea aerogels with controlled porosity. RSC Adv. 5: 105329–105338, https://doi.org/10.1039/c5ra20788f.Search in Google Scholar
Silverstein, M.S. (2014). PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 39: 199–234, https://doi.org/10.1016/j.progpolymsci.2013.07.003.Search in Google Scholar
Smallwood, I.M. (2012). Handbook of organic solvent properties. Elsevier, New York, USA, pp. 1–306.Search in Google Scholar
Tebboth, M., Menner, A., Kogelbauer, A., and Bismarck, A. (2014). Polymerised high internal phase emulsions for fluid separation applications. Curr. Opin. Chem. Eng. 4: 114–120, https://doi.org/10.1016/j.coche.2014.03.001.Search in Google Scholar
Teo, N. and Jana, S.C. (2017). Open cell aerogel foams via emulsion templating. Langmuir 33: 12729–12738, https://doi.org/10.1021/acs.langmuir.7b03139.Search in Google Scholar PubMed
Teo, N. and Jana, S.C. (2018). Solvent effects on tuning pore structures in polyimide aerogels. Langmuir 34: 8581–8590, https://doi.org/10.1021/acs.langmuir.8b01513.Search in Google Scholar PubMed
Teo, N. and Jana, S.C. (2019). A surfactant-free process for fabrication of polyimide aerogel microparticles. Langmuir 35: 2303–2312, https://doi.org/10.1021/acs.langmuir.8b03841.Search in Google Scholar PubMed
Teo, N., Gu, Z., and Jana, S.C. (2018). Polyimide-based aerogel foams via emulsion-templating. Polymer 157: 12729−12738, https://doi.org/10.1016/j.polymer.2018.10.030.Search in Google Scholar
Teo, N., Jin, C., Kulkarni, A., and Jana, S.C. (2020). Continuous fabrication of core-shell aerogel microparticles using microfluidic flows. J. Colloid Interface Sci. 561: 772–781, https://doi.org/10.1016/j.jcis.2019.11.053.Search in Google Scholar PubMed
Teo, N., Joo, P., Amis, E., and Jana, S.C. (2019). Development of intricate aerogel articles using fused filament fabrication. ACS Appl. Polym. Mater. 1: 1749–1756, https://doi.org/10.1021/acsapm.9b00301.Search in Google Scholar
Wang, X. and Jana, S.C. (2013). Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels. Langmuir 29: 5589–5598, https://doi.org/10.1021/la400492m.Search in Google Scholar PubMed
Wong, L.L.C., Villafranca, P.M.B., Menner, A., and Bismarck, A. (2013). Hierarchical polymerized high internal phase emulsions synthesized from surfactant-stabilized emulsion templates. Langmuir 29: 5952–5961, https://doi.org/10.1021/la3047643.Search in Google Scholar PubMed
Yoldas, B.E., Annen, M.J., and Bostaph, J. (2000). Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem. Mater. 12: 2475–2484, https://doi.org/10.1021/cm9903428.Search in Google Scholar
Zapryanov, Z., Malhotra, A.K., Aderangi, N., and Wasan, D.T. (1983). Emulsion stability: an analysis of the effects of bulk and interfacial properties on film mobility and drainage rate. Int. J. Multiphas. Flow 9: 105–129, https://doi.org/10.1016/0301-9322(83)90047-2.Search in Google Scholar
Zebida, O.A. (2011). Aerogel filters for removal of nanometric airborne particles. LAMBERT Academic Publishing (LAP), Chisinau, Republic of Moldova.Search in Google Scholar
Zhai, C. and Jana, S.C. (2017). Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS Appl. Mater. Interfaces 9: 30074–30082, https://doi.org/10.1021/acsami.7b09345.Search in Google Scholar PubMed
Zhou, B., Shen, J., Yuehua, W., Wu, G., and Ni, X. (2007). Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater. Sci. Eng. 27: 1291–1294, https://doi.org/10.1016/j.msec.2006.06.032.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ipp-2022-4248).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Special issue for John Vlachopoulos
- Review Article
- Calendering of thermoplastics: models and computations
- Special Issue Contributions
- Film casting of polycarbonate/multi-walled carbon nanotubes composites using ultrasound-assisted twin-screw extruder: experiment and simulation
- Effect of mixing conditions and polymer particle size on the properties of polypropylene/graphite nanoplatelets micromoldings
- Extrusion foaming of linear and branched polypropylenes – input of the thermomechanical analysis of pressure drop in the die
- Improving the thickness distribution of parts with hybrid thermoforming
- Synergistic material extrusion 3D-printing using core–shell filaments containing polycarbonate-based material with different glass transition temperatures and viscosities
- TPU-based porous heterostructures by combined techniques
- Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams
- Factors determining the flow erosion/part deformation of film insert molded thermoplastic products
- The extrusion of EPDM using an external gear pump: experiments and simulations
- News
- PPS News
Articles in the same Issue
- Frontmatter
- Editorial
- Special issue for John Vlachopoulos
- Review Article
- Calendering of thermoplastics: models and computations
- Special Issue Contributions
- Film casting of polycarbonate/multi-walled carbon nanotubes composites using ultrasound-assisted twin-screw extruder: experiment and simulation
- Effect of mixing conditions and polymer particle size on the properties of polypropylene/graphite nanoplatelets micromoldings
- Extrusion foaming of linear and branched polypropylenes – input of the thermomechanical analysis of pressure drop in the die
- Improving the thickness distribution of parts with hybrid thermoforming
- Synergistic material extrusion 3D-printing using core–shell filaments containing polycarbonate-based material with different glass transition temperatures and viscosities
- TPU-based porous heterostructures by combined techniques
- Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams
- Factors determining the flow erosion/part deformation of film insert molded thermoplastic products
- The extrusion of EPDM using an external gear pump: experiments and simulations
- News
- PPS News