Home Thermodynamic assessment of the Pd–Zr system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic assessment of the Pd–Zr system

  • Zhenmin Du EMAIL logo
Published/Copyright: February 4, 2022
Become an author with De Gruyter Brill

Abstract

The Pd–Zr system has been critically assessed by means of the CALPHAD technique. The solution phases (liquid, body-centered cubic (Zr), face-centered cubic (Pd) and hexagonal close-packed (Zr)) were modeled with the Redlich – Kister equation. The intermetallic compounds Pd3Zr and γPdZr, which have a homogeneity range, were treated as the formulae (Pd, Zr)3(Pd, Zr) and (Pd, Va)(Pd, Zr) by a two-sublattice model with Pd and Zr or Pd and vacancies, denoted Va, on the first sublattice, Pd and Zr on the second one, respectively. Both compounds Pd2Zr and PdZr2 having a tetragonal MoSi2-type structure were treated as one phase with the formula PdZr(Pd, Zr) by a three-sublattice model with Pd on the first sublattice, Zr on the second, and Pd and Zr on the third one, respectively. The others were treated as stoichiometric compounds. A set of self-consistent thermodynamic parameters of the Pd–Zr system was obtained.


Prof. Z. Du Department of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083, P. R. China Tel.: +86 10 6233 3772 Fax: +86 10 6233 3772

  1. This work was supported by National Natural Science Foundation of China (NSFC) (Grant No. 50071007, 50271008), and the Thermo-Calc software was used.

References

[1] K.J. Bryden, J.Y. Ying: Acta Mater. 44 (1996) 3847.10.1016/1359-6454(96)00020-1Search in Google Scholar

[2] V. Strom, K.S. Kim, A.M. Grishin, K.V. Rao: J. Appl. Phys. 79 (1996) 5860.10.1063/1.362151Search in Google Scholar

[3] M. Ege, H. Kronmüller: J. Alloys Comp. 283 (1999) 71.10.1016/S0925-8388(98)00915-3Search in Google Scholar

[4] H. Kleykamp: Nucl. Technol. 80 (1988) 412.10.13182/NT88-A34065Search in Google Scholar

[5] A.T. Dinsdale: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[6] R.M. Waterstrat, A. Shapiro, A. Jeremie: J. Alloys Comp. 290 (1999) 63.10.1016/S0925-8388(99)00127-9Search in Google Scholar

[7] M. Hillert, L.I. Staffansson: Acta Chem. Scand. 24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar

[8] B. Sundman, J. Ågren: J. Phys. Chem. Solids 42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar

[9] A.J. Bradley, A. Taylor: Proc. R. Soc. London Ser. A 159 (1937) 56.10.1098/rspa.1937.0056Search in Google Scholar

[10] J. Philibert: Atom Movements-Diffusion and Mass Transport in Solids, Les Editions de Physique (1991).Search in Google Scholar

[11] H. Mehrer: Mater. Trans. JIM 37 (1996) 1259.10.2320/matertrans1989.37.1259Search in Google Scholar

[12] K. Anderko: Z. Metallkd. 50 (1959) 681.10.1515/ijmr-1959-501201Search in Google Scholar

[13] E.M. Savitsky, V.P. Polyakova, B.P. Kridin, A.A. Kozlov, E.M. Khorlin: Phase Diagrams of the Metal Systems, Nauka, Moscow (1971) 200.Search in Google Scholar

[14] M.S. Chandrasekharaiah, M.J. Stickney, K.A. Gingerich, J.A. Speed: J. Alloy Phase Diagr. 6 (1990) 59.Search in Google Scholar

[15] S. Stølen, T. Matsui: J. Nucl. Mater. 186 (1992) 242.10.1016/0022-3115(92)90342-ISearch in Google Scholar

[16] H. Okamoto: J. Phase Equilibria 13 (1992) 357.10.1007/BF02667500Search in Google Scholar

[17] H. Okamoto: J. Phase Equilibria 14 (1993) 266.10.1007/BF02667830Search in Google Scholar

[18] L.A. Bendersky, J.K. Stalick, R.M. Waterstrat: J. Alloys Comp. 201 (1993) 121.10.1016/0925-8388(93)90871-JSearch in Google Scholar

[19] L.A. Bendersky, J.K. Stalick, R. Portier, R.M. Waterstrat: J. Alloys Comp. 236 (1996) 19.10.1016/0925-8388(96)80046-6Search in Google Scholar

[20] P. Steiner, S. Hüfner: Acta Metall. 29 (1981) 1855.10.1016/0001-6160(81)90114-0Search in Google Scholar

[21] J.C. Gachon, J. Charles, J. Hertz: Calphad 9 (1985) 29.10.1016/0364-5916(85)90028-8Search in Google Scholar

[22] L.Topor, O.J. Kleppa: Metall. Trans. A 18 (1987) 1989.10.1007/BF02647029Search in Google Scholar

[23] S. Stølen, T. Matsui, K. Naito: J. Nucl. Mater. 173 (1990) 48.10.1016/0022-3115(90)90311-ASearch in Google Scholar

[24] J.C. Gachon, N. Selhaoui, B. Aba, J. Hertz: J. Phase Equilibria 13 (1992) 506.10.1007/BF02665763Search in Google Scholar

[25] A.K. Niessen, F.R. de Boer, R. Boom, P. de Chatel, W.C.M. Mattens, A.R. Miedema: Calphad 7 (1983) 51.10.1016/0364-5916(83)90030-5Search in Google Scholar

[26] C. Colinet, A. Pasturel, P. Hicter: Calphad 9 (1985) 71.10.1016/0364-5916(85)90032-XSearch in Google Scholar

[27] R.E. Watson, L.H. Bennett: Phys. Rev. Lett. 43 (1979) 1130.10.1103/PhysRevLett.43.1130Search in Google Scholar

[28] R.E. Watson, L.H. Bennett: Calphad 8 (1984) 307.10.1016/0364-5916(84)90034-8Search in Google Scholar

[29] R.E. Watson, M. Weinert, J.W. Davenport, G.W. Fernando: Phys. Rev. B 39 (1989) 10761.10.1103/PhysRevB.39.10761Search in Google Scholar

[30] H.J. Schaller: Ber. Bunsenges. Phys. Chem. 80 (1976) 999.10.1002/bbpc.19760801014Search in Google Scholar

[31] B. Sundman, B. Jansson, J.-O. Andersson: Calphad 9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

[32] P. Bellen, K.C. Hari Kumar, P. Wollants: Z. Metallkd. 87 (1996) 972.10.1515/ijmr-1996-871207Search in Google Scholar

[33] I. Ansara, N. Dupin, H. L. Lukas, B. Sundman: J. Alloys Comp. 247 (1997) 20.10.1016/S0925-8388(96)02652-7Search in Google Scholar

[34] H. Okamoto, T.B. Massalski: J. Phase Equilibria 14 (1993) 316 and 15 (1994) 500.10.1007/BF02668229Search in Google Scholar

Received: 2002-08-02
Published Online: 2022-02-04

© 2003 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Articles/Aufsätze
  3. An atomistic Monte Carlo simulation of precipitation in a binary system
  4. Thermodynamic assessment of the Pd–Zr system
  5. Cyclic deformation and dislocation structure evolution of a copper bicrystal with components rotating gradually along the grain boundary
  6. Microstructural characterization of alloys of the quasibinary Cu–NiBe system
  7. Microstructural characterisation and thermal stability of a metastable Mg-8.6 wt.% Zr alloy produced by physical vapour deposition
  8. Development of microstructure in solution-heat-treated Mg-5Al-xCa alloys
  9. The effect of Ti alloying on the mechanical properties and microstructure of a Zn–Al–Cu–Mg alloy
  10. Dry wear response of a Zn-based alloy containing 37.5% Al as affected by sliding conditions
  11. Microstructure selection map for rapidly solidified Al-rich Al–Sr alloys
  12. Dependence of the microstructure, residual stresses and texture of AA 6013 friction stir welds on the welding proces
  13. The effect of carbon on the restoration phenomena during hot deformation of carbon steels
  14. Deformation behavior during hot torsion of an ultrahigh carbon steel containing 1.3 wt.% C
  15. Effect of impact damage on electrical resistivity of C/C–SiC composites
  16. Depth-resolved residual stress evaluation from X-ray diffraction measurement data using the approximate inverse method
  17. Combined scanning probe microscopy and electron microscopy study of microstructure evolution in copper processed by equal channel angular pressing
  18. Notifications/Mitteilungen
  19. Personal/ Personelles
  20. Information
  21. Books/Bücher
  22. Conferences /Konferenzen
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0154/html
Scroll to top button