Home Identification of new probe substrates for human CYP20A1
Article
Licensed
Unlicensed Requires Authentication

Identification of new probe substrates for human CYP20A1

  • Pradeepraj Durairaj , Linbing Fan , Sangeeta Shrestha Sharma , Zhao Jie and Matthias Bureik EMAIL logo
Published/Copyright: October 28, 2019

Abstract

CYP20A1 is a well-conserved member of the human cytochrome P450 enzyme family for which no endogenous or xenobiotic substrate is known. We have recently shown that this enzyme has moderate activity towards two proluciferin probe substrates. In order to facilitate the search for physiological substrates we have tested nine additional proluciferins in this study and identified three such probe substrates that give much higher product yields. Using one of these probes, we demonstrate inhibition of CYP20A1 activity by 1-benzylimidazole, ketoconazole and letrozole. Finally, we show that the combination of two common single nucleotide polymorphisms (SNPs) of CYP20A1 leads to an enzyme (CYP20A1Leu97Phe346) with reduced activity.

  1. Conflict of interest statement: The authors report no financial or other relationship relevant to the subject of this article.

References

Altshuler, D.M., Durbin, R.M., Abecasis, G.R., Bentley, D.R., Chakravarti, A., Clark, A.G., Donnelly, P., Eichler, E.E., Flicek, P., Gabriel, S.B., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74.10.1038/nature15393Search in Google Scholar

Avadhani, N.G., Sangar, M.C., Bansal, S., and Bajpai, P. (2011). Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J. 278, 4218–4229.10.1111/j.1742-4658.2011.08356.xSearch in Google Scholar

Bhatnagar, A.S., Hausler, A., Schieweck, K., Lang, M., and Bowman, R. (1990). Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol. 37, 1021–1027.10.1016/0960-0760(90)90460-3Search in Google Scholar

Cali, J.J., Ma, D., Wood, M.G., Meisenheimer, P.L., and Klaubert, D.H. (2012). Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates. Expert Opin. Drug Metab. Toxicol. 8, 1115–1130.10.1517/17425255.2012.695345Search in Google Scholar

Cao, X., Durairaj, P., Yang, F., and Bureik, M. (2019). A comprehensive overview of common polymorphic variants that cause missense mutations in human CYPs and UGTs. Biomed. Pharmacother. 111, 983–992.10.1016/j.biopha.2019.01.024Search in Google Scholar

Diani-Moore, S., Papachristou, F., Labitzke, E., and Rifkind, A.B. (2006). Induction of CYP1A and cyp2-mediated arachidonic acid epoxygenation and suppression of 20-hydroxyeicosatetraenoic acid by imidazole derivatives including the aromatase inhibitor vorozole. Drug Metab. Dispos. 34, 1376–1385.10.1124/dmd.106.009498Search in Google Scholar

Dragan, C.A., Peters, F.T., Bour, P., Schwaninger, A.E., Schaan, S.M., Neunzig, I., Widjaja, M., Zapp, J., Kraemer, T., Maurer, H.H., et al. (2011). Convenient gram-scale metabolite synthesis by engineered fission yeast strains expressing functional human P450 systems. Appl. Biochem. Biotechnol. 163, 965–980.10.1007/s12010-010-9100-3Search in Google Scholar

Durairaj, P., Fan, L., Du, W., Ahmad, S., Mebrahtu, D., Sharma, S., Ashraf, R.A., Liu, J., Liu, Q., and Bureik, M. (2019). Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett. 593, 1372–1380.10.1002/1873-3468.13441Search in Google Scholar

Giudici, D., Ornati, G., Briatico, G., Buzzetti, F., Lombardi, P., and di Salle, E. (1988). 6-Methylenandrosta-1,4-diene-3,17-dione (FCE 24304): a new irreversible aromatase inhibitor. J. Steroid Biochem. 30, 391–394.10.1016/0022-4731(88)90129-XSearch in Google Scholar

Guengerich, F.P. and Cheng, Q. (2011). Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol. Rev. 63, 684–699.10.1124/pr.110.003525Search in Google Scholar PubMed PubMed Central

Han, J., Kim, D.H., Seo, J.S., Kim, I.C., Nelson, D.R., Puthumana, J., and Lee, J.S. (2017). Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 193, 42–49.10.1016/j.cbpc.2017.01.001Search in Google Scholar

Kroetz, D.L. and Xu, F. (2005). Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu. Rev. Pharmacol. Toxicol. 45, 413–438.10.1146/annurev.pharmtox.45.120403.100045Search in Google Scholar

Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291.10.1038/nature19057Search in Google Scholar

Lemaire, B., Kubota, A., O’Meara, C.M., Lamb, D.C., Tanguay, R.L., Goldstone, J.V., and Stegeman, J.J. (2016). Cytochrome P450 20A1 in zebrafish: cloning, regulation and potential involvement in hyperactivity disorders. Toxicol. Appl. Pharmacol. 296, 73–84.10.1016/j.taap.2016.02.001Search in Google Scholar

Maundrell, K. (1990). nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem. 265, 10857–10864.10.1016/S0021-9258(19)38525-4Search in Google Scholar

Maundrell, K. (1993). Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123, 127–130.10.1016/0378-1119(93)90551-DSearch in Google Scholar

Nebert, D.W., Wikvall, K., and Miller, W.L. (2013). Human cytochromes P450 in health and disease. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120431.10.1098/rstb.2012.0431Search in Google Scholar PubMed PubMed Central

Nelson, D.R., Goldstone, J.V., and Stegeman, J.J. (2013). The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 368, 20120474.10.1098/rstb.2012.0474Search in Google Scholar PubMed PubMed Central

Seki, T., Wang, M.H., Miyata, N., and Laniado-Schwartzman, M. (2005). Cytochrome P450 4A isoform inhibitory profile of N-hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine (HET0016), a selective inhibitor of 20-HETE synthesis. Biol. Pharm. Bull. 28, 1651–1654.10.1248/bpb.28.1651Search in Google Scholar PubMed

Sim, S.C., Kacevska, M., and Ingelman-Sundberg, M. (2013). Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 13, 1–11.10.1038/tpj.2012.45Search in Google Scholar PubMed

Stark, K., Wu, Z.L., Bartleson, C.J., and Guengerich, F.P. (2008). mRNA distribution and heterologous expression of orphan cytochrome P450 20A1. Drug Metab. Dispos. 36, 1930–1937.10.1124/dmd.108.022020Search in Google Scholar PubMed PubMed Central

Trachtenberg, J. and Zadra, J. (1988). Steroid synthesis inhibition by ketoconazole: sites of action. Clin Invest Med 11, 1–5.Search in Google Scholar

Yan, Q., Machalz, D., Zollner, A., Sorensen, E.J., Wolber, G., and Bureik, M. (2017). Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochem. Pharmacol. 146, 174–187.10.1016/j.bcp.2017.09.011Search in Google Scholar PubMed

Zhou, Y., Ingelman-Sundberg, M., and Lauschke, V.M. (2017). Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin. Pharmacol. Ther. 102, 688–700.10.1002/cpt.690Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2019-0307).


Received: 2019-07-05
Accepted: 2019-10-08
Published Online: 2019-10-28
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2019-0307/html
Scroll to top button