Home Lp-representations of discrete quantum groups
Article
Licensed
Unlicensed Requires Authentication

Lp-representations of discrete quantum groups

  • Michael Brannan and Zhong-Jin Ruan
Published/Copyright: April 28, 2015

Abstract

Given a locally compact quantum group 𝔾, we define and study representations and C-completions of the convolution algebra L1(𝔾) associated with various linear subspaces of the multiplier algebra Cb(𝔾). For discrete quantum groups 𝔾, we investigate the left regular representation, amenability and the Haagerup property in this framework. When 𝔾 is unimodular and discrete, we study in detail the C-completions of L1(𝔾) associated with the non-commutative Lp-spaces Lp(𝔾). As an application of this theory, we characterize (for each p[1,)) the positive definite functions on unimodular orthogonal and unitary free quantum groups 𝔾 that extend to states on the Lp-C-algebra of 𝔾. Using this result, we construct uncountably many new examples of exotic quantum group norms for compact quantum groups.

Funding statement: The first author was partially supported by an NSERC Postdoctoral Fellowship. The second author was partially supported by the Simons Foundation.

Acknowledgements

The authors wish to thank Quanhua Xu for fruitful conversations related to complex interpolation at an early stage of this work and to thank the referee for helpful suggestions.

References

[1] T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 3, 241–244. Search in Google Scholar

[2] T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), 143–172. 10.1007/s002200050237Search in Google Scholar

[3] E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865–884. 10.1142/S0129167X03002046Search in Google Scholar

[4] J. Bergh and J. Löfström, Interpolation spaces: An introduction, Springer, Berlin 1976. 10.1007/978-3-642-66451-9Search in Google Scholar

[5] J. Bichon, A. De Rijdt and S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728. 10.1007/s00220-005-1442-2Search in Google Scholar

[6] M. Brannan, Approximation properties for free orthogonal and free unitary quantum groups, J. reine angew. Math. 672 (2012), 223–251. 10.1515/CRELLE.2011.166Search in Google Scholar

[7] M. Brannan, M. Daws and E. Samei, Completely bounded representations of convolution algebras of locally compact quantum groups, Münster J. Math. 6 (2013), no. 2, 445–482. Search in Google Scholar

[8] N. Brown and E. Guentner, New C-completions of discrete groups and related spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193. 10.1112/blms/bdt044Search in Google Scholar

[9] A. Buss and R. Meyer, Square-integrable coactions of locally compact quantum groups, Rep. Math. Phys. 63 (2009), no. 2, 191–224. 10.1016/S0034-4877(09)00013-5Search in Google Scholar

[10] M. Cowling, U. Haagerup and R. Howe, Almost L2 matrix coefficients, J. reine angew. Math. 387 (1988), 97–110. 10.1515/crll.1988.387.97Search in Google Scholar

[11] K. Davidson, C-algebras by example, Fields Inst. Monogr. 6, American Mathematical Society, Providence 1996. 10.1090/fim/006Search in Google Scholar

[12] M. Daws, Multipliers, self-induced and dual Banach algebras, Dissertationes Math. 470 (2010). 10.4064/dm470-0-1Search in Google Scholar

[13] M. Daws, Completely positive multipliers of quantum groups, Internat. J. Math. 23 (2012), no. 12, Article ID 1250132. 10.1142/S0129167X12501327Search in Google Scholar

[14] M. Daws, P. Fima, A. Skalski and S. White, The Haagerup property for locally compact quantum groups, J. reine angew. Math. (2014), 10.1515/crelle-2013-0113. 10.1515/crelle-2013-0113Search in Google Scholar

[15] M. Daws, P. Kasprzak, A. Skalski and P. Soltan, Closed quantum subgroups of locally compact quantum groups, Adv. Math. 231 (2012), no. 6, 3473–3501. 10.1016/j.aim.2012.09.002Search in Google Scholar

[16] M. Daws and P. Salmi, Completely positive definite functions and Bochner’s theorem for locally compact quantum groups, J. Funct. Anal. 264 (2013), no. 7, 1525–1546. 10.1016/j.jfa.2013.01.017Search in Google Scholar

[17] K. De Commer, A. Freslon and M. Yamashita, CCAP for universal discrete quantum groups, Comm. Math. Phys. 331 (2014), no. 2, 677–701. 10.1007/s00220-014-2052-7Search in Google Scholar

[18] E. G. Effros and Z.-J. Ruan, Discrete quantum groups. I: The Haar measure, Internat. J. Math. 5 (1994), no. 5, 681–723. 10.1142/S0129167X94000358Search in Google Scholar

[19] E. G. Effros and Z.-J. Ruan, Operator spaces, London Math. Soc. Monogr. Ser. 23, Oxford University Press, New York 2000. Search in Google Scholar

[20] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964). 10.24033/bsmf.1607Search in Google Scholar

[21] U. Haagerup, An example of a nonnuclear C-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), 279–293. 10.1007/BF01410082Search in Google Scholar

[22] M. Kalantar, On harmonic non-commutative Lp-operators on locally compact quantum groups, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3969–3976. 10.1090/S0002-9939-2013-11763-6Search in Google Scholar

[23] S. Kaliszewski, M. B. Landstad and J. Quigg, Exotic group C-algebras in noncommutative duality, New York J. Math. 19 (2013), 689–711. Search in Google Scholar

[24] J. Kustermans, Locally compact quantum groups in the universal setting, Internat. J. Math. 12 (2001), no. 3, 289–338. 10.1142/S0129167X01000757Search in Google Scholar

[25] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Éc. Norm. Supér. (4) 33 (2000), no. 6, 837–934. 10.1016/S0012-9593(00)01055-7Search in Google Scholar

[26] J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68–92. 10.7146/math.scand.a-14394Search in Google Scholar

[27] D. Kyed and P. Soltan, Property (T) and exotic quantum group norms, J. Noncommut. Geom. 6 (2012), no. 4, 773–800. 10.4171/JNCG/105Search in Google Scholar

[28] R. Okayasu, Free group C-algebras associated with p, Internat. J. Math. 25 (2014), no. 7, Article ID 1450065. 10.1142/S0129167X14500657Search in Google Scholar

[29] G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser. 294, Cambridge University Press, Cambridge 2003. 10.1017/CBO9781107360235Search in Google Scholar

[30] P. Podleś and S. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. Phys. 130 (1990), no. 3, 381–431. 10.1007/BF02473358Search in Google Scholar

[31] Z.-J. Ruan, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal. 139 (1996), no. 2, 466–499. 10.1006/jfan.1996.0093Search in Google Scholar

[32] R. Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949–964. 10.2969/jmsj/1179759531Search in Google Scholar

[33] S. Vaes, Locally compact quantum groups, Doctoral thesis, Katholieke Universiteit Leuven, 2001. Search in Google Scholar

[34] S. Vaes and A. Van Daele, Hopf C-algebras, Proc. Lond. Math. Soc. (3) 82 (2001), 337–384. 10.1112/S002461150101276XSearch in Google Scholar

[35] S. Vaes and R. Vergnioux, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84. 10.1215/S0012-7094-07-14012-2Search in Google Scholar

[36] A. Van Daele and S. Wang, Universal quantum groups, Internat. J. Math. 7 (1996), no. 3, 255–263. 10.1142/S0129167X96000153Search in Google Scholar

[37] R. Vergnioux, K-amenability for amalgamated free products of amenable discrete quantum groups, J. Funct. Anal. 212 (2004), no. 1, 206–221. 10.1016/j.jfa.2003.07.017Search in Google Scholar

[38] R. Vergnioux, Orientation of quantum Cayley trees and applications, J. reine angew. Math. 580 (2005), 101–138. 10.1515/crll.2005.2005.580.101Search in Google Scholar

[39] R. Vergnioux, The property of rapid decay for discrete quantum groups, J. Operator Theory 57 (2007), no. 2, 303–324. Search in Google Scholar

[40] R. Vergnioux and C. Voigt, The K-theory of free quantum groups, Math. Ann. 357 (2013), no. 1, 355–400. 10.1007/s00208-013-0902-9Search in Google Scholar

[41] S. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches 1995), North-Holland, Amsterdam (1998), 845–884. Search in Google Scholar

Received: 2014-4-24
Revised: 2014-8-29
Published Online: 2015-4-28
Published in Print: 2017-11-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0140/html
Scroll to top button