Home Remarks on commutators in finite groups
Article
Licensed
Unlicensed Requires Authentication

Remarks on commutators in finite groups

  • Marian Deaconescu EMAIL logo and Gary Walls
Published/Copyright: April 28, 2015

Abstract

The main result of this paper is a formula, in terms of characters, for the number of elements of a normal subgroup H of a finite group G which are not commutators in G.


Dedicated to I. M. Isaacs


References

[1] F. G. Frobenius, Über Gruppencharaktere, Sitzungsber. Königl. Preuss. Akad. Wissensch. Berlin 1896 (1896), 985–1021; re-printed in: Gesammelte Abhandlungen. Band 3, Springer, Berlin (1968), 1–37. Search in Google Scholar

[2] P. X. Gallagher, The number of commutators in a finite group, Math. Z. 118 (1970), 175–179. 10.1007/BF01113339Search in Google Scholar

[3] W. Gaschütz, Über die Φ-Untergruppe endlicher Gruppen, Math. Z. 58 (1953), 160–170. 10.1007/BF01174137Search in Google Scholar

[4] R. Guralnick, Expressing group elements as products of commutators, Ph.D. thesis, UCLA, 1977. Search in Google Scholar

[5] K. Honda, On commutators in finite groups, Comment. Math. Univ. St. Pauli 2 (1953), 16–21. Search in Google Scholar

[6] I. M. Isaacs, Character theory of finite groups, Academic Press, New York 1976. Search in Google Scholar

[7] I. M. Isaacs, Group actions and orbits, Arch. Math. 98 (2012), no. 5, 399–401. 10.1007/s00013-012-0364-4Search in Google Scholar

[8] L.-C. Kappe and R. F. Morse, On commutators in groups, Groups St. Andrews 2005. Vol. II, London Math. Soc. Lecture Note Ser. 318, Cambridge University Press, Cambridge (2007), 531–558. 10.1017/CBO9780511721205.018Search in Google Scholar

Received: 2014-10-13
Revised: 2014-12-15
Published Online: 2015-4-28
Published in Print: 2017-11-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/crelle-2014-0152/html
Scroll to top button