Abstract
In recent years, evolutionary algorithms have been gaining popularity for finding optimal solutions to non-linear multimodal problems encountered in many engineering disciplines. Differential evolution (DE), an evolutionary algorithm, is a novel optimization method capable of handling nondifferentiable, non-linear, and multimodal objective functions. DE is an efficient, effective, and robust evolutionary optimization method. Still, DE takes large computational time to optimize the computationally expensive objective functions. Therefore, an attempt to speed up DE is considered necessary. This paper introduces a modification to the original DE that enhances the convergence rate without compromising solution quality. The proposed opposite point-based differential evolution (OPDE) algorithm utilizes opposite point-based population initialization, in addition to random initialization. Such an improvement reduces computational effort. The OPDE has been applied to benchmark test functions and high-dimensional non-linear chemical engineering problems. The proposed method of population initialization accelerates the convergence speed of DE, as indicated by the results obtained using benchmark test functions and non-linear chemical engineering problems.
Funding source: Guru Gobind Singh Indraprastha University
Award Identifier / Grant number: GGSIPU/DRC/FRGS/2022/1223/35
Acknowledgments
Authors are thankful to the anonymous reviewers for their valuable suggestions.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: No conflict of interest.
-
Research funding: Financial support from the Guru Gobind Singh Indraprastha University is gratefully acknowledged. The work has been supported under Faculty Research Grant Scheme (FRGS) for the year 2022–23 (F. No. GGSIPU/FRGS/2022/1223/35).
-
Data availability: Not applicable.
References
1. Michalik, C, Chachuat, B, Marquardt, W. Incremental global parameter estimation in dynamical systems. Ind Eng Chem Res 2009;48:5489–97. https://doi.org/10.1021/ie8015472.Search in Google Scholar
2. Gau, CY, Brennecke, JF, Stadtherr, MA. Reliable nonlinear parameter estimation in VLE modeling. Fluid Ph Equilibria 2000;168:1–18. https://doi.org/10.1016/s0378-3812(99)00332-5.Search in Google Scholar
3. Anderson, TF, Abrams, DS, Grens, IIEA. Evaluation of parameters for nonlinear thermodynamic models. AIChE J 1978;24:20–9. https://doi.org/10.1002/aic.690240103.Search in Google Scholar
4. Chang, JS, Li, CC, Liu, WL, Deng, JH. Two-stage parameter estimation applied to ordinary differential equation models. J Taiwan Inst Chem Eng 2015;000:1–10. https://doi.org/10.1016/j.jtice.2015.05.004.Search in Google Scholar
5. Khan, AI, Billah, MM, Ying, C, Liu, J, Dutta, P. Bayesian method for parameter estimation in transient heat transfer problem. Int J Heat Mass Tran 2021;166:120746. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120746.Search in Google Scholar
6. Dua, V. An artificial neural network approximation-based decomposition approach for parameter estimation of system of ordinary differential equations. Comput Chem Eng 2011;35:545–53. https://doi.org/10.1016/j.compchemeng.2010.06.005.Search in Google Scholar
7. Chang, JS, Deng, JH, Wang, GB. Estimation of kinetic parameters for glycerol/alcohol dehydration reaction systems with incomplete chromatography data set. J Taiwan Inst Chem Eng 2016;60:185–98. https://doi.org/10.1016/j.jtice.2015.11.011.Search in Google Scholar
8. Peric, ND, Paulen, R, Villanueva, ME, Chachuat, B. Set-membership nonlinear regression approach to parameter estimation. J Process Control 2018;70:80–95. https://doi.org/10.1016/j.jprocont.2018.04.002.Search in Google Scholar
9. Eslick, JC, Akula, PT, Bhattacharyya, D, Miller, DC. Simultaneous parameter estimation in reactive solvent-based processes. Comput Aided Chem Eng 2018;44:901–6.10.1016/B978-0-444-64241-7.50145-2Search in Google Scholar
10. Stortelder, WJH. Parameter estimation in chemical engineering, a case study for resin production. Sci comput chem eng. Berlin, Heidelberg: Springer; 1996.10.1007/978-3-642-80149-5_27Search in Google Scholar
11. Erodotou, P, Voutsas, E, Sarimveis, H. A genetic algorithm approach for parameter estimation in vapour-liquid thermodynamic modelling problems. Comput Chem Eng 2020;134:106684. https://doi.org/10.1016/j.compchemeng.2019.106684.Search in Google Scholar
12. Britt, HI, Luecke, RH. The estimation of parameters in nonlinear, implicit models. Technometrics 1973;15:233–47. https://doi.org/10.1080/00401706.1973.10489037.Search in Google Scholar
13. Fabries, JF, Renon, H. Method for evaluation and reduction of vapor-liquid equilibrium data of binary mixtures. AIChE J 1975;21:735–43. https://doi.org/10.1002/aic.690210414.Search in Google Scholar
14. Tjoa, IB, Biegler, LT. Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind Eng Chem Res 1991;30:376–85. https://doi.org/10.1021/ie00050a015.Search in Google Scholar
15. Edgar, TF, Himmelblau, DM, Lasdon, LS. Optimization of chemical processes, 2nd ed. New York: McGraw-Hill; 2001:306–18 pp.Search in Google Scholar
16. Esposito, WR, Floudas, CA. Global optimization for the parameter estimation of differential-algebraic systems. Ind Eng Chem Res 2000;39:1291–310. https://doi.org/10.1021/ie990486w.Search in Google Scholar
17. Jaulin, L, Walter, E. Guaranteed nonlinear parameter estimation via interval computations. Interfac Comput 1993;3:61–75.Search in Google Scholar
18. Dantas, LB, Orlande, HRB, Cotta, RM. An inverse problem of parameter estimation for heat and mass transfer in capillary porous media. Int J Heat Mass Tran 2003;46:1587–98. https://doi.org/10.1016/s0017-9310(02)00424-6.Search in Google Scholar
19. Sajedi, R, Faraji, J, Kowsary, F. A new damping strategy of Levenberg-Marquardt algorithm with a fuzzy method for inverse heat transfers problem parameter estimation. Int Commun Heat Mass Tran 2021;126:105433. https://doi.org/10.1016/j.icheatmasstransfer.2021.105433.Search in Google Scholar
20. Walter, E, Kieffer, M. Guaranteed nonlinear parameter estimation in knowledge-based models. J Comput Appl Math 2007;199:277–85. https://doi.org/10.1016/j.cam.2005.07.039.Search in Google Scholar
21. Abunahman, SS, Santos, LC, Tavares, FW, Kontogeorgis, GM. A computational tool for parameter estimation in EoS: new methodologies and natural gas phase equilibria calculations. Chem Eng Sci 2020;215:115437. https://doi.org/10.1016/j.ces.2019.115437.Search in Google Scholar
22. Vamos, RJ, Hass, CN. Reduction of ion-exchange equilibria data using an error in variables approach. AIChE J 1994;40:556–69. https://doi.org/10.1002/aic.690400316.Search in Google Scholar
23. Dao, TT. Investigation on evolutionary computation techniques of a nonlinear system. Model Simulat Eng 2011;2011:1–21. https://doi.org/10.1155/2011/496732.Search in Google Scholar
24. Sen, S. Chapter 4 – a survey of intrusion detection systems using evolutionary computation. In: Yang X-S, Chien SF, Ting TO, Kaufmann M, editors. Bio-inspired computation in telecommunications. USA: Elsevier Inc.; 2015:73–94 pp.10.1016/B978-0-12-801538-4.00004-5Search in Google Scholar
25. Zelinka, I, Davendra, DD, Senkerik, R, Pluhacek, M. Investigation on evolutionary predictive control of chemical reactor. J Appl Logic 2015;13:156–66. https://doi.org/10.1016/j.jal.2014.11.009.Search in Google Scholar
26. Mallaiah, M, Rao, KR, Venkateswarlu, C. A simulated annealing optimization algorithm based nonlinear model predictive control strategy with application. Evol Syst 2021;12:225–31. https://doi.org/10.1007/s12530-020-09354-1.Search in Google Scholar
27. Zhang, H, Rangaiah, GP, Petriciolet, AB. Integrated differential evolution for global optimization and its performance for modeling VaporLiquid equilibrium data. Ind Eng Chem Res 2011;50:10047–61. https://doi.org/10.1021/ie200819p.Search in Google Scholar
28. Bertolino, A, Furst, M, Stagni, A, Frassoldati, A, Pelucchi, M, Cavallotti, C, et al.. An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion. Combust Flame 2021;229:111366. https://doi.org/10.1016/j.combustflame.2021.02.012.Search in Google Scholar
29. Rao, KR, Marjan, T, Mohammad, TY, Sahu, JN. Optimization and modelling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J Environ Manag 2018;223:517–29. https://doi.org/10.1016/j.jenvman.2018.06.027.Search in Google Scholar PubMed
30. Rasoulzadeh, H, Dehghani, MH, Sheikhmohammadi, A, Rao, KR, Nabizadeh, R, Nazmara, S, et al.. Parametric modelling of Pb(II) adsorption onto chitosan-coated Fe3O4 particles through RSM and DE hybrid evolutionary optimization framework. J Mol Liq 2020;297:111893. https://doi.org/10.1016/j.molliq.2019.111893.Search in Google Scholar
31. Ryzhikov, I, Semenkin, E, Panfilov, I. Evolutionary optimization algorithms for differential equation parameters, initial value and order identification. In: Proceedings of the 13th international conference on Informatics in Control, Automation and Robotics (ICINCO 2016). Lisbon, Portugal: SCITEPRESS; 2016, 1:168–76 pp.10.5220/0005979201680176Search in Google Scholar
32. Gujarathi, AM, Nezhaad, GV, Vatani, M. Optimization of process design problems using differential evolution algorithm. J Eng Res 2016;13:88–101.10.24200/tjer.vol13iss1pp89-102Search in Google Scholar
33. Saha, C, Agbu, N, Jinks, R, Huda, MN. Review article of the solar PV parameters estimation using evolutionary algorithms. MOJSP 2018;2:63–75.Search in Google Scholar
34. Dragoi, EN, Curteanu, S. The use of differential evolution algorithm for solving chemical engineering problems. Rev Chem Eng 2016;32:149–80. https://doi.org/10.1515/revce-2015-0042.Search in Google Scholar
35. Esmailzadeh, A, Rahnamayan, S. Opposition-based differential evolution with protective generation jumping. Paris, France: IEEE Symposium on Differential Evolution (SDE); 2011:1–8 pp.10.1109/SDE.2011.5952059Search in Google Scholar
36. Rahnamayan, S, Tizhoosh, HR, Salama, MMA. A novel population initialization method for accelerating evolutionary algorithms. Comput Math Appl 2007;53:1605–14. https://doi.org/10.1016/j.camwa.2006.07.013.Search in Google Scholar
37. Storn, R, Price, K. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley. CA: International Computer Science Institute; 1995. Tech. Rep. TR-95-012.Search in Google Scholar
38. Storn, R, Price, K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 1997;11:341–59. https://doi.org/10.1023/a:1008202821328.10.1023/A:1008202821328Search in Google Scholar
39. Onwubolu, GC, Babu, BV. New optimization techniques in engineering. Berlin, New York: Springer; 2004.10.1007/978-3-540-39930-8Search in Google Scholar
40. Zhang, H, Rangaiah, GP. A hybrid global optimization algorithm and its applications to parameter estimation problems. Asia Pac J Chem Eng 2011;6:379–90. https://doi.org/10.1002/apj.548.Search in Google Scholar
41. Price, KV. An introduction to differential evolution. In: Corne, D, Dorigo, M, Glover, F, editors. New ideas in optimization. London, UK: McGraw-Hill; 1999:79–108 pp.Search in Google Scholar
42. Ali, M, Pant, M. Improving the performance of differential evolution algorithm using Cauchy mutation. Soft Comput 2011;15:991–1007. https://doi.org/10.1007/s00500-010-0655-2.Search in Google Scholar
43. Storn, R. On the usage of differential evolution for function optimization. In: Proceedings: NAFIPS 1996. Berkeley, CA, USA; 1996:519–23 pp.Search in Google Scholar
44. Sarker, RA, Elsayed, SM, Ray, T. Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans Evol Comput 2014;18:689–707. https://doi.org/10.1109/tevc.2013.2281528.Search in Google Scholar
45. Das, S, Mullick, SS, Suganthan, PN. Recent advances in differential evolution-an updated survey. Swarm Evol Comput 2016;27:1–30. https://doi.org/10.1016/j.swevo.2016.01.004.Search in Google Scholar
46. Rahnamayan, S, Tizhoosh, HR, Salama, MMA. Opposition-based differential evolution for optimization of noisy problems. In: 2006 IEEE int. conf. evol. comput.; 2006:1865–72 pp.10.1109/CEC.2006.1688534Search in Google Scholar
47. Rahnamayan, S, Tizhoosh, HR, Salama, MMA. Opposition-based differential evolution. IEEE Trans Evol Comput 2008;12:64–79. https://doi.org/10.1109/tevc.2007.894200.Search in Google Scholar
48. Ozer, AB. CIDE: chaotically initialized differential evolution. Expert Syst Appl 2010;37:4632–41. https://doi.org/10.1016/j.eswa.2009.12.045.Search in Google Scholar
49. Melo, VV, Delbem, ACB. Investigating smart sampling as a population initialization method for differential evolution in continuous problems. Inf Sci 2012;193:36–53. https://doi.org/10.1016/j.ins.2011.12.037.Search in Google Scholar
50. Zhu, W, Tang, Y, Fang, JA, Zhang, W. Adaptive population tuning scheme for differential evolution. Inf Sci 2013;223:164–91. https://doi.org/10.1016/j.ins.2012.09.019.Search in Google Scholar
51. Poikolainen, I, Neri, F, Caraffini, F. Cluster-based population initialization for differential evolution frameworks. Inf Sci 2015;297:216–35. https://doi.org/10.1016/j.ins.2014.11.026.Search in Google Scholar
52. Bajer, D, Martinovic, G, Brest, J. A population initialization method for evolutionary algorithms based on clustering and Cauchy deviates. Expert Syst Appl 2016;60:294–310. https://doi.org/10.1016/j.eswa.2016.05.009.Search in Google Scholar
53. Ali, MZ, Awad, NZ, Suganthan, PN, Reynolds, RG. An adaptive multipopulation differential evolution with dynamic population reduction. IEEE Trans Cybern 2016;47:2768–79. https://doi.org/10.1109/tcyb.2016.2617301.Search in Google Scholar
54. Mustafi, D, Sahoo, G. A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering. Soft Comput 2019;23:6361–78. https://doi.org/10.1007/s00500-018-3289-4.Search in Google Scholar
55. Liu, WL, Gong, YJ, Chen, WN, Liu, Z, Wang, H, Zhang, J. Coordinated charging scheduling of electric vehicles: a mixed-variable differential evolution approach. IEEE Trans Intell Transport Syst 2020;21:5094–109. https://doi.org/10.1109/tits.2019.2948596.Search in Google Scholar
56. Zhao, F, He, X, Mang, L. A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem. IEEE Trans Cybern 2021;51:5291–303. https://doi.org/10.1109/tcyb.2020.3025662.Search in Google Scholar
57. Zhao, F, Ma, R, Wang, L. A self-learning discrete Jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Trans Cybern 2022;52:12675–86.10.1109/TCYB.2021.3086181Search in Google Scholar PubMed
58. Zhou, S, Xing, L, Zheng, X, Du, N, Wang, L, Zhang, Q. A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times. IEEE Trans Cybern 2021;51:1430–42. https://doi.org/10.1109/tcyb.2019.2939219.Search in Google Scholar
59. Ahmad, MF, Isa, NAM, Lim, WH, Ang, KM. Differential evolution with modified initialization scheme using chaotic oppositional based learning strategy. Alex Eng J 2022;61:11835–58. https://doi.org/10.1016/j.aej.2022.05.028.Search in Google Scholar
60. Ahandani, MA, Alavi-Rad, H. Opposition-based learning in the shuffled differential evolution algorithm. Soft Comput 2012;16:1303–37. https://doi.org/10.1007/s00500-012-0813-9.Search in Google Scholar
61. Dhahri, H, Alimi, AM. Opposition-based differential evolution for beta basis function neural network. In: IEEE cong. evol. comput.; 2010:1–8 pp.10.1109/CEC.2010.5585970Search in Google Scholar
62. Peng, L, Wang, Y. Differential evolution using uniform-quasi opposition for initializing the population. Inf Technol J 2010;9:1629–34. https://doi.org/10.3923/itj.2010.1629.1634.Search in Google Scholar
63. Rahnamayan, S, Tizhoosh, HR, Salama, MMA. Opposition-based differential evolution (ODE) with variable jumping rate. Honolulu, In: IEEE Symp Foun Comput Intell. FOCI 2007; 2007:81–8 pp.10.1109/FOCI.2007.372151Search in Google Scholar
64. Rahnamayan, S, Tizhoosh, HR, Salama, MMA. Quasi-oppositional differential evolution. In: IEEE cong. evol. comput. (CEC’07). Singapore: IEEE; 2007:2229–36 pp.10.1109/CEC.2007.4424748Search in Google Scholar
65. Thangaraj, R, Pant, M, Chelliah, TR, Abraham, A. Opposition based chaotic differential evolution algorithm for solving global optimization problems. In: 4th world cong. NaBIC’12. Mexico City: IEEE; 2012:1–7 pp.10.1109/NaBIC.2012.6402168Search in Google Scholar
66. Wang, H, Wu, Z, Rahnamayan, S. Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems. Soft Comput 2011;15:2127–40. https://doi.org/10.1007/s00500-010-0642-7.Search in Google Scholar
67. Wang, H, Wu, Z, Rahnamayan, S, Wang, J. Diversity Analysis of opposition-based differential evolution-an experimental study. In: Cai, Z, Hu, C, Kang, Z, Liu, Y, editors. Adv. comput. intell. Springer Berlin, Heidelberg; 2010:95–102 pp.10.1007/978-3-642-16493-4_10Search in Google Scholar
68. Wang, J, Wu, Z, Wang, H. Hybrid differential evolution algorithm with chaos and generalized opposition-based learning. In: Cai, Z, Hu, C, Kang, Z, Liu, Y, editors. Adv. comput. intell. Springer Berlin/Heidelberg; 2010:103–11 pp.10.1007/978-3-642-16493-4_11Search in Google Scholar
69. Wu, Y, Zhao, B, Guo, J, Su, TJ, Luo, AR, Fan, RJ, et al.. A fast opposition-based differential evolution with cauchy mutation. In: Glob congress intell. sys.; 2012:72–5 pp.10.1109/GCIS.2012.91Search in Google Scholar
70. Tjoa, IB, Biegler, LT. Reduced successive quadratic programming strategy for errors-in-variables estimation. Comput Chem Eng 1992;16:523–33. https://doi.org/10.1016/0098-1354(92)80064-g.Search in Google Scholar
71. Floudas, CA, Adjiman, CS, Esposito, WR, Gümüş, ZH, Harding, ST, Klepeis, JL, et al.. Handbook of test problems in local and global optimization, 1st ed. New York, NY: Springer; 1999, vol. 33:167–76 pp.10.1007/978-1-4757-3040-1_5Search in Google Scholar
72. Esposito, WR, Foudas, CA. Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind Eng Chem Res 1998;37:1841–58. https://doi.org/10.1021/ie970852g.Search in Google Scholar
73. Esposito, WR, Foudas, CA. Parameter estimation in nonlinear algebraic models via global optimization. Comput Chem Eng 1998;22:S213–20. https://doi.org/10.1016/s0098-1354(98)00217-8.Search in Google Scholar
74. Rod, V, Hancil, V. Iterative estimati1on of model parameters when measurements of all variables are subject to error. Comput Chem Eng 1980;4:33–8. https://doi.org/10.1016/0098-1354(80)80011-1.Search in Google Scholar
75. Moore, R, Hansen, E, Ledere, A. Rigorous methods for global optimization. In: Recent advances for global optimization. Pri1nceton: Princeton University Press; 2014:321–42 pp.10.1515/9781400862528.321Search in Google Scholar
76. Valko, P, Vajda, S. An extended marquardt-type procedure for fitting error-in-variables models. Comput Chem Eng 1987;11:37–43. https://doi.org/10.1016/0098-1354(87)80004-2.Search in Google Scholar
77. Kim, IW, Liebman, MJ, Edgar, TF. Robust error-in-variables estimation using nonlinear programming techniques. AIChE J 1990;36:985–93. https://doi.org/10.1002/aic.690360703.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Tuning of PID controllers for unstable first-order plus dead time systems
- Oxygen excess ratio control of PEM fuel cell: fractional order modeling and fractional filter IMC-PID control
- Proposal and energy/exergy/economic analyses of a smart heat recovery for distillation tower of the Naphtha Hydrotreating Unit of the Petrochemical Plant; designing a low-carbon plant
- Three-dimensional CFD study on thermo-hydraulic behaviour of finned tubes in a heat exchange system for heat transfer enhancement
- A simulation and thermodynamic improvement of the methanol production process with economic analysis: natural gas vapor reforming and utilization of carbon capture
- Optimization of hydrogel composition for effective release of drug
- Mathematical modelling of water-based biogas scrubber operating at digester pressure
- COCO, a process simulator: methane oxidation simulation & its agreement with commercial simulator’s predictions
- Hydrodynamics of shear thinning fluid in a square microchannel: a numerical approach
- Parameter estimation in non-linear chemical processes: an opposite point-based differential evolution (OPDE) approach
Articles in the same Issue
- Frontmatter
- Research Articles
- Tuning of PID controllers for unstable first-order plus dead time systems
- Oxygen excess ratio control of PEM fuel cell: fractional order modeling and fractional filter IMC-PID control
- Proposal and energy/exergy/economic analyses of a smart heat recovery for distillation tower of the Naphtha Hydrotreating Unit of the Petrochemical Plant; designing a low-carbon plant
- Three-dimensional CFD study on thermo-hydraulic behaviour of finned tubes in a heat exchange system for heat transfer enhancement
- A simulation and thermodynamic improvement of the methanol production process with economic analysis: natural gas vapor reforming and utilization of carbon capture
- Optimization of hydrogel composition for effective release of drug
- Mathematical modelling of water-based biogas scrubber operating at digester pressure
- COCO, a process simulator: methane oxidation simulation & its agreement with commercial simulator’s predictions
- Hydrodynamics of shear thinning fluid in a square microchannel: a numerical approach
- Parameter estimation in non-linear chemical processes: an opposite point-based differential evolution (OPDE) approach