Home Design of multi-loop control systems for distillation columns: review of past and recent mathematical tools
Article
Licensed
Unlicensed Requires Authentication

Design of multi-loop control systems for distillation columns: review of past and recent mathematical tools

  • Changsoo Kim , Manas Shah and Ali M. Sahlodin EMAIL logo
Published/Copyright: March 26, 2021
Become an author with De Gruyter Brill

Abstract

Design of a control structure in distillation columns involves selecting proper sets of manipulated and controlled variables (often including tray temperatures for inferential control of product compositions) and one-to-one pairing between the two sets. In this paper, various mathematical tools for achieving this goal are reviewed. First, traditional methods such as Singular Value Decomposition (SVD) and Relative Gain Array (RGA) that build upon a simplified steady-state or dynamic model of the column are explored. The role of optimization in systematizing the control design procedures is also investigated. Then, more recent inferential control techniques that rely on statistical methods such as Principal Component Regression (PCR), Partial Least Squares Regression (PLSR), and other machine learning techniques such as Artificial Neural Networks (ANN) and Support Vector Machine Regression (SVMR) are discussed extensively. The discussions include newer distillation technologies with complex configurations such as dividing-wall columns. Finally, the use of process simulators in aiding the control structure design of distillation columns is surveyed.


Corresponding author: Ali M. Sahlodin, Process Systems Engineering Laboratory, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box: 15875-4413, Tehran, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kiss, AA. Advanced distillation technologies: design, control and applications. John Wiley & Sons; 2013.10.1002/9781118543702Search in Google Scholar

2. Corriou, J-P. Process control theory and applications, 2nd ed. Springer International Publishing; 2018.10.1007/978-3-319-61143-3Search in Google Scholar

3. Petlyuk, F. Distillation theory and its application to optimal design of separation units. In: Cambridge Series in Chemical Engineering. Cambridge, UK: Cambridge University Press; 2004.10.1017/CBO9780511547102Search in Google Scholar

4. Kiss, AA. Distillation technology still young and full of breakthrough opportunities. J Chem Tech Biotechnol 2014;89:479–98. https://doi.org/10.1002/jctb.4262.Search in Google Scholar

5. Kiss, AA, Landaeta, SJF, Ferreira, CAI. Towards energy efficient distillation technologies – making the right choice. Energy 2012;47:531–42.10.1016/j.energy.2012.09.038Search in Google Scholar

6. Soave, G, Feliu, JA. Saving energy in distillation towers by feed splitting. Appl Therm Eng 2002;22:889–96.10.1016/S1359-4311(02)00006-6Search in Google Scholar

7. White, D. Optimize energy use in distillation. Chem Eng Prog 2012;108:37–42.Search in Google Scholar

8. Osuolale, F, Zhang, J. Distillation control structure selection for energy-efficient operations. Chem Eng Technol 2015;38:907–16.10.1002/ceat.201400707Search in Google Scholar

9. Porru, M, Baratti, R, Alvarez, J. Energy saving through control in an industrial multicomponent distillation column. IFAC-PapersOnLine 2015;48:1138–43.10.1016/j.ifacol.2015.09.121Search in Google Scholar

10. Lang, L. Dynamic behavior and operational aspects of heat-integrated distillation processes. Chem Eng Technol 1996;19:489–97.10.1002/ceat.270190605Search in Google Scholar

11. Liptak. Instrument engineers’ handbook. Boca Raton, FL: CRC Press; 2003.10.1201/9781420064025Search in Google Scholar

12. Luyben, WL. Effect of feed composition on the selection of control structures for high-purity binary distillation. Ind Eng Chem Res 2005;44:7800–13. https://doi.org/10.1021/ie0580147.Search in Google Scholar

13. Luyben, WL. Principles and case studies of simultaneous design. Hoboken, NJ, USA: John Wiley & Sons; 2011.10.1002/9781118001653Search in Google Scholar

14. Luyben, WL. Evaluation of criteria for selecting temperature control trays in distillation columns. J Process Contr 2006;16:115–34.10.1016/j.jprocont.2005.05.004Search in Google Scholar

15. Luyben, WL. Practical distillation control. US: Springer; 1992.10.1007/978-1-4757-0277-4Search in Google Scholar

16. Luyben, WL. Distillation design and control using AspenTM simulation. John Wiley & Sons; 2006.10.1002/0471785253Search in Google Scholar

17. Rademaker, O, Rijnsdorp, JE, Maarleveld, A. Dynamics and control of continuous distillation units. New York, NY, USA: Elsevier Science Inc; 1975.Search in Google Scholar

18. Shinskey, F. Distillation control: for productivity and energy conservation. McGraw-Hill; 1977.10.1016/B978-0-12-641650-3.50013-XSearch in Google Scholar

19. Skogestad, S, Morari, M. Understanding the dynamic behavior of distillation columns. Ind Eng Chem Res 1988;27:1848–62. https://doi.org/10.1021/ie00082a018.Search in Google Scholar

20. Skogestad, S. The dos and don’ts of distillation column control. Chem Eng Res Des 2007;85:13–23.10.1205/cherd06133Search in Google Scholar

21. Skogestad, S. Dynamics and control of distillation columns – a critical survey. Model Identif Control 1997;18:177–217.10.1016/B978-0-08-041711-0.50007-6Search in Google Scholar

22. Mejdell, T, Skogestad, S. Estimation of distillation compositions from multiple temperature measurements using partial-least-squares regression. Ind Eng Chem Res 1991;30:2543–55. https://doi.org/10.1021/ie00060a007.Search in Google Scholar

23. Kiss, AA. Reactive distillation technology. John Wiley & Sons; 2013:251–74 pp.10.1002/9781118543702Search in Google Scholar

24. Yildirim, Ö, Kiss, AA, Kenig, EY. Dividing wall columns in chemical process industry: a review on current activities. Separ Purif Technol 2011;80:403–17.10.1016/j.seppur.2011.05.009Search in Google Scholar

25. Hernández, S, Sandoval-Vergara, R, Barroso-Muñoz, FO, Murrieta-Dueñas, R, Hernández-Escoto, H, Segovia-Hernández, JG, et al.. Reactive dividing wall distillation columns: simulation and implementation in a pilot plant. Chem Eng Process: Process Intensification 2009;48:250–8. https://doi.org/10.1016/j.cep.2008.03.015.Search in Google Scholar

26. Tsai, W-H, Huang, H-P, Yu, C-C. Control structure design for parallel processes: application to heat-integrated distillation. Chem Eng Res Des 2005;83:153–9.10.1205/cherd.04157Search in Google Scholar

27. Phimister, JR, Seider, WD. Semicontinuous, middle-vessel distillation of ternary mixtures. AIChE J 2000;46:1508–20.10.1002/aic.690460804Search in Google Scholar

28. Weinfeld, JA, Owens, SA, Eldridge, R. “Reactive dividing wall columns: a comprehensive review. Chem Eng Process: Process Intensification 2018;123:20–33.10.1016/j.cep.2017.10.019Search in Google Scholar

29. Phimister, JR, Seider, WD. Semicontinuous, middle-vessel, extractive distillation. Comput Chem Eng 2000;24:879–85.10.1016/S0098-1354(00)00344-6Search in Google Scholar

30. Pascall, A, Adams, TAII. Semicontinuous separation of dimethyl ether (dme) produced from biomass. Can J Chem Eng 2013;91:1001–21.10.1002/cjce.21813Search in Google Scholar

31. Kaymak, DB, Luyben, WL. Comparison of two types of two-temperature control structures for reactive distillation columns. Ind Eng Chem Res 2005;44:4625–40. https://doi.org/10.1021/ie058012m.Search in Google Scholar

32. Panjwani, P, Schenk, M, Georgiadis, MC, Pistikopoulos, EN. Process design and control of a reactive distillation system. IFAC Proc 2004;37:227–32.10.1016/S1474-6670(17)31816-5Search in Google Scholar

33. Pavan Kumar, MV, Kaistha, N. Steady-state multiplicity and its implications on the control of an ideal reactive distillation column. Ind Eng Chem Res 2008;47:2778–87. https://doi.org/10.1021/ie701720r.Search in Google Scholar

34. Ling, H, Luyben, WL. New control structure for divided-wall columns. Ind Eng Chem Res 2009;48:6034–49. https://doi.org/10.1021/ie801373b.Search in Google Scholar

35. Dwivedi, D, Halvorsen, IJ, Skogestad, S. Control structure selection for three-product petlyuk (dividing-wall) column. Chem Eng Process: Process Intensification 2013;64:57–67. https://doi.org/10.1016/j.cep.2012.11.006.Search in Google Scholar

36. Kiss, AA, Bildea, CS. A control perspective on process intensification in dividing-wall columns. Chem Eng Process: Process Intensification 2011;50:281–92. https://doi.org/10.1016/j.cep.2011.01.011.Search in Google Scholar

37. Hussain, MA. Review of the applications of neural networks in chemical process control – simulation and online implementation. Artif Intell Eng 1999;13:55–68.10.1016/S0954-1810(98)00011-9Search in Google Scholar

38. Skogestad, S, Lundstrom, P, Jacobsen, EW. Selecting the best distillation control configuration. AIChE J 1990;36:753–64.10.1002/aic.690360512Search in Google Scholar

39. Hori, E, Skogestad, S. Selection of control structure and temperature location for two-product distillation columns. Chem Eng Res Des 2007;85:293–306. https://doi.org/10.1205/cherd06115.Search in Google Scholar

40. Lewin, D. A simple tool for disturbance resiliency diagnosis and feedforward control design. Comput Chem Eng 1996;20:13–25.10.1016/0098-1354(95)00006-NSearch in Google Scholar

41. Morari, M. Design of resilient processing plants-III: a general framework for the assessment of dynamic resilience. Chem Eng Sci 1983;38:1881–91.10.1016/0009-2509(83)85044-1Search in Google Scholar

42. Skogestad, S. Plantwide control: the search for the self-optimizing control structure. J Process Contr 2000;10:487–507.10.1016/S0959-1524(00)00023-8Search in Google Scholar

43. Halvorsen, IJ, Skogestad, S, Morud, JC, Alstad, V. Optimal selection of controlled variables. Ind Eng Chem Res 2003;42:3273–84. https://doi.org/10.1021/ie020833t.Search in Google Scholar

44. Kano, M, Miyazaki, K, Hasebe, S, Hashimoto, I. Inferential control system of distillation compositions using dynamic partial least squares regression. J Process Contr 2000;10:157–66. https://doi.org/10.1016/s0959-1524(99)00027-x.Search in Google Scholar

45. Luyben, WL. Parallel cascade control. Ind Eng Chem Fundam 1973;12:463–7. https://doi.org/10.1021/i160048a012.Search in Google Scholar

46. Qian, X, Jia, S, Skogestad, S, Yuan, X. Control structure selection for four-product kaibel column. Comput Chem Eng 2016;93:372–81.10.1016/j.compchemeng.2016.07.019Search in Google Scholar

47. Seborg, DE, Edgar, TF, Mellichamp, DA, Doyle, FJIII. Process dynamics and control, 4th ed. Hoboken, NJ, USA: John Wiley & Sons; 2016.Search in Google Scholar

48. Skogestad, S, Postlethwaite, I. Multivariable feedback control: analysis and design, 2nd ed. West Sussex, England: John Wiley & Sons; 2005.Search in Google Scholar

49. Khaki-Sedigh, A, Moaveni, B. Control configuration selection for multivariable plants, Lecture notes in control and information sciences. Berlin Heidelberg: Springer-Verlag; 2009.10.1007/978-3-642-03193-9Search in Google Scholar

50. Marlin, TE. Process control: designing processes and control systems for dynamic performance, 2nd ed. Boston, MA, USA: McGraw-Hill; 2000.Search in Google Scholar

51. Stanley, G, Marino-Galarraga, M, McAvoy, TJ. Short cut operability analysis. 1. The relative disturbance gain. Ind Eng Chem Process Des Dev 1985;24:1181–8. https://doi.org/10.1021/i200031a048.Search in Google Scholar

52. Hansen, JE, Jørgensen, SB, Heath, J, Perkins, JD. Control structure selection for energy integrated distillation column. J Process Contr 1998;8:185–95. https://doi.org/10.1016/s0959-1524(97)00039-5 http://www.sciencedirect.com/science/article/pii/S0959152497000395.Search in Google Scholar

53. Noeth, G. Multivariable design for an industrial distillation column used as a separator. IFAC Proc Vol 2000;33:521–6.10.1016/S1474-6670(17)38593-2Search in Google Scholar

54. Zahran, MFI, Rahimi, AN, Zubir, MA, Shahruddin, MZ, Ibrahim, KA, Hamid, MKA. Relative gain analysis of energy efficient hydrocarbon separation sequence. Energy Procedia 2017;142:2624–9.10.1016/j.egypro.2017.12.202Search in Google Scholar

55. Zahran, MFI, Nordin, MZ, Rahimi, AN, Zubir, MA, Shahruddin, MZ, Ibrahim, KA, et al.. Control properties of driving force based distillation columns design. Energy Procedia 2017;142:2965–70.10.1016/j.egypro.2017.12.315Search in Google Scholar

56. Ahmadian Behrooz, H. Robust set-point optimization of inferential control system of crude oil distillation units. ISA Trans 2019;95:93–109.10.1016/j.isatra.2019.05.022Search in Google Scholar PubMed

57. Raimondi, A, Favela-Contreras, A, Beltrán-Carbajal, F, Piñón-Rubio, A, de la Peña-Elizondo, JL. Design of an adaptive predictive control strategy for crude oil atmospheric distillation process. Contr Eng Pract 2015;34:39–48.10.1016/j.conengprac.2014.09.014Search in Google Scholar

58. Jacobsen, EW, Skogestad, S. Instability of distillation columns. AIChE J 1994;40:1466–78. https://doi.org/10.1002/aic.690400906.Search in Google Scholar

59. Chang, J-W, Yu, C-C. Relative disturbance gain array. AIChE J 1992;38:521–34. https://doi.org/10.1002/aic.690380406.Search in Google Scholar

60. Agustriyanto, R, Zhang, J. Worst case of relative disturbance gain array for uncertain distillation system. Makara J Technol 2012;16:135–43.10.7454/mst.v16i2.1512Search in Google Scholar

61. McAvoy, TJ. Interaction analysis: principles and applications. Research Triangle Park, NC: Instrument Society of America; 1983.Search in Google Scholar

62. Xiong, Q, Cai, W-J, He, M-J. A practical loop pairing criterion for multivariable processes. J Process Contr 2005;15:741–7.10.1016/j.jprocont.2005.03.008Search in Google Scholar

63. He, M-J, Cai, W-J, Ni, W, Xie, L-H. Rnga based control system configuration for multivariable processes. J Process Contr 2009;19:1036–42. https://doi.org/10.1016/j.jprocont.2009.01.004.Search in Google Scholar

64. Seider, WD, Lewin, DR, Seader, JD, Widagdo, S, Gani, R, Ng, KM. Product and process design principles: synthesis, analysis and evaluation, 4th ed. New York, USA: John Wiley & Sons; 2017.Search in Google Scholar

65. Jiann-Shiou, Y. Optimization-based PI/PID control for a binary distillation column. In: Proceedings of the 2005, American control conference, 2005, vol 5:3650–5 pp.10.1109/ACC.2005.1470541Search in Google Scholar

66. Ramirez-Marquez, C, Miranda-Galido, E, Segovia-Hernández, J, Hernández, S. Tuning of PI controllers by differential evolution with tabu list method. In: Espuña, A, Graells, M, Puigjaner, L, editors. 27th European symposium on computer aided process engineering, computer aided chemical engineering. Elsevier; 2017, vol. 40:1633–8 pp.10.1016/B978-0-444-63965-3.50274-9Search in Google Scholar

67. Garcia, CE, Morari, M. Internal model control. A unifying review and some new results. Ind Eng Chem Process Des Dev 1982;21:308–23. https://doi.org/10.1021/i200017a016.Search in Google Scholar

68. Pham, LC, Engell, S. A procedure for systematic control structure selection with application to reactive distillation. IFAC Proc Vol 2011;44:4898–903.10.3182/20110828-6-IT-1002.01528Search in Google Scholar

69. Kookos, IK, Perkins, JD. A systematic method for optimum sensor selection in inferential control systems. Ind Eng Chem Res 1999;38:4299–308. https://doi.org/10.1021/ie9902737.Search in Google Scholar

70. Kookos, IK, Perkins, JD. An algorithmic method for temperature sensor location selection in distillation columns. IFAC Proc Vol 2000;33:527–32.10.1016/S1474-6670(17)38594-4Search in Google Scholar

71. Bansal, V, Perkins, JD, Pistikopoulos, EN. A case study in simultaneous design and control using rigorous, mixed-integer dynamic optimization models. Ind Eng Chem Res 2002;41:760–78. https://doi.org/10.1021/ie010156n.Search in Google Scholar

72. Sharifzadeh, M, Thornhill, NF. Optimal selection of control structure using a steady-state inversely controlled process model. Comput Chem Eng 2012;38:126–38.10.1016/j.compchemeng.2011.12.007Search in Google Scholar

73. Sharifzadeh, M. Implementation of a steady-state inversely controlled process model for integrated design and control of an etbe reactive distillation. Chem Eng Sci 2013;92:21–39.10.1016/j.ces.2013.01.026Search in Google Scholar

74. Paramasivan, G, Kienle, A. Decentralized control system design under uncertainty using mixed-integer optimization. Chem Eng Technol 2012;35:261–71.10.1002/ceat.201100357Search in Google Scholar

75. Barz, T, Wozny, G, Arellano-Garcia, H. Robust implementation of optimal decisions using a two-layer chance-constrained approach. Ind Eng Chem Res 2011;50:5050–63. https://doi.org/10.1021/ie1014525.Search in Google Scholar

76. Ahmadian Behrooz, H. Robust design and control of extractive distillation processes under feed disturbances. Ind Eng Chem Res 2017a;56:4446–62. https://doi.org/10.1021/acs.iecr.7b00004.Search in Google Scholar

77. Ahmadian Behrooz, H. Robust synthesis of the pressure-swing distillation process under azeotropic feed composition disturbance-study of the tetrahydrofuran/methanol system. Comput Chem Eng 2017b;104:211–30. https://doi.org/10.1016/j.compchemeng.2017.04.022.Search in Google Scholar

78. Mutalib, MA, Smith, R. Operation and control of dividing wall distillation columns: Part 1: degrees of freedom and dynamic simulation. Chem Eng Res Des 1998;76:308–18.10.1205/026387698524956Search in Google Scholar

79. Cho, Y, Kim, B, Kim, D, Han, M, Lee, M. Operation of divided wall column with vapor sidedraw using profile position control. J Process Contr 2009;19:932–41. https://doi.org/10.1016/j.jprocont.2008.12.003.Search in Google Scholar

80. Qian, X, Jia, S, Skogestad, S, Yuan, X. Comparison of stabilizing control structures for dividing wall columns. IFAC-PapersOnLine 2016;49:729–34.10.1016/j.ifacol.2016.07.271Search in Google Scholar

81. Fan, G, Jiang, W, Qian, X. Comparison of stabilizing control structures for four-product kaibel column. Chem Eng Res Des 2016;109:675–85. https://doi.org/10.1016/j.cherd.2016.03.025.Search in Google Scholar

82. Qian, X, Liu, R, Huang, K, Chen, H, Yuan, Y, Zhang, L, et al.. Comparison of temperature control and temperature difference control for a kaibel dividing wall column. Processes 2019;7:773.10.3390/pr7100773Search in Google Scholar

83. Zang, L, Huang, K, Guo, T, Yuan, Y, Chen, H, Zhang, L, et al.. Temperature inferential control of a reactive distillation column with double reactive sections. Chin J Chem Eng 2019;27:896–904.10.1016/j.cjche.2018.11.023Search in Google Scholar

84. Luyben, WL. Feedback control of distillation columns by double differential temperature control. Ind Eng Chem Fundam 1969;8:739–44. https://doi.org/10.1021/i160032a023.Search in Google Scholar

85. Yu, CC, Luyben, WL. Use of multiple temperatures for the control of multicomponent distillation columns. Ind Eng Chem Process Des Dev 1984;23:590–7. https://doi.org/10.1021/i200026a031.Search in Google Scholar

86. Kano, M, Fujiwara, K. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications. J Chem Eng Jpn 2012:12we167.10.1252/jcej.12we167Search in Google Scholar

87. Zhu, Z, Wang, L, Ma, Y, Wang, W, Wang, Y. Separating an azeotropic mixture of toluene and ethanol via heat integration pressure swing distillation. Comput Chem Eng 2015;76:137–49.10.1016/j.compchemeng.2015.02.016Search in Google Scholar

88. Porru, M, Alvarez, J, Baratti, R. Composition Estimator Design for Industrial Multicomponent Distillation Column. Chem Eng Trans 2013;32:1975–80.Search in Google Scholar

89. Kano, M, Showchaiya, N, Hasebe, S, Hashimoto, I. Inferential control of distillation compositions: selection of model and control configuration. Contr Eng Pract 2003;11:927–33. https://doi.org/10.1016/s0967-0661(02)00215-0.Search in Google Scholar

90. Burnham, A, MacGregor, J, Viveros, R. Latent variable multivariate regression modeling. Chemometr Intell Lab Syst 1999;48:167–80. https://doi.org/10.1016/s0169-7439(99)00018-0.Search in Google Scholar

91. Jackson, J. A user’s guide to principal components. New York, USA: Wiley; 1991.10.1002/0471725331Search in Google Scholar

92. Zhang, J. Offset-free inferential feedback control of distillation compositions based on PCR and PLS models. Chem Eng Technol 2006;29:560–6.10.1002/ceat.200500259Search in Google Scholar

93. Ahmed, MH, Zhang, J. Multivariable inferential feedback control of distillation compositions using dynamic principal component regression models. In: Proceedings of the 2003 American control conference. IEEE, Piscataway, NJ, USA; 2003, vol. 3, 1974–9 pp.10.1109/ACC.2003.1243363Search in Google Scholar

94. Al Kalbani, FK, Zhang, J. Inferential active disturbance rejection control of a heat integrated distillation column. In: 2016 14th International conference on control, automation, robotics and vision, ICARCV 2016. IEEE, Piscataway, NJ, USA; 2017.10.1109/ICARCV.2016.7838796Search in Google Scholar

95. Zamprogna, E, Barolo, M, Seborg, DE. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. J Process Contr 2005.10.1016/j.jprocont.2004.04.006Search in Google Scholar

96. Shin, J, Lee, M, Park, S. Design of a composition estimator for inferential control of distillation columns. Chem Eng Commun 2000;178:221–48.10.1080/00986440008912184Search in Google Scholar

97. Zhang, J. Inferential feedback control of distillation composition based on PCR and PLS models. Chem Eng Technol 2006;2:1196–201.10.1109/ACC.2001.945884Search in Google Scholar

98. Wold, S, Sjöström, M, Eriksson, L. Pls-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 2001;58:109–30.10.1016/S0169-7439(01)00155-1Search in Google Scholar

99. Kresta, JV, Marlin, TE, Macgregor, JF. Development of inferential process models using PLS Technical Report. Comput Chem Eng 1994;18:597–611.10.1016/0098-1354(93)E0006-USearch in Google Scholar

100. Qin, SJ, McAvoy, TJ. Nonlinear PLS modeling using neural networks. Comput Chem Eng 1992;16:379–91.10.1016/0098-1354(92)80055-ESearch in Google Scholar

101. Fujii, H, Lakshminarayanan, S, Shah, SL. Application of the PLS echnique to the stimation of istillation tower op omposition. IFAC Proc Vol 2017;30:583–8. https://doi.org/10.1016/S1474-6670(17)43212-5.Search in Google Scholar

102. Evangelista, MA, Neves, F, Arruda, LV, Ramos, AE. Development of inferential distillation models using multivariate statistical methods. In: Proceedings of the IEEE conference on decision and control. IEEE, Piscataway, NJ, USA; 2001.10.1109/CDC.2001.980442Search in Google Scholar

103. Komulainen, T, Sourander, M, Jämsä-Jounela, SL. An online application of dynamic PLS to a dearomatization process. Comput Chem Eng 2004;28:2611–9.10.1016/j.compchemeng.2004.07.014Search in Google Scholar

104. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networks 2014;61:85–117.10.1016/j.neunet.2014.09.003Search in Google Scholar

105. Nair, V, Hinton, GE. Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning. ICML, Haifa, Israel; 2010.Search in Google Scholar

106. Bhartiya, S, Whiteley, JR. Development of inferential measurements using neural networks. ISA Trans 2001;40:307–23. https://doi.org/10.1016/s0019-0578(01)00004-0.Search in Google Scholar

107. Singh, V, Gupta, I, Gupta, H. ANN based estimator for distillation inferential control. Chem Eng Process: Process Intensification 2005;44:785–95.10.1016/j.cep.2004.08.010Search in Google Scholar

108. Singh, AK, Tyagi, B, Kumar, V. Application of neural network based control strategies to binary distillation column. J Contr Eng Appl Inf 2013;15:47–57.Search in Google Scholar

109. Singh, V, Gupta, I, Gupta, H. ANN-based estimator for distillation using Levenberg-Marquardt approach. Eng Appl Artif Intell 2007;20:249–59.10.1016/j.engappai.2006.06.017Search in Google Scholar

110. Singh, AK, Tyagi, B, Kumar, V. ANFIS based control scheme for binary distillation column. Chem Prod Process Model 2017;12.10.1515/cppm-2016-0008Search in Google Scholar

111. Cortes, C, Vapnik, V. Support-vector networks. Mach Learn 1995;20:273–97. https://doi.org/10.1007/bf00994018.Search in Google Scholar

112. Hofmann, T, Schölkopf, B, Smola, AJ. Kernel methods in machine learning. Ann Stat 2008:1171–220. https://doi.org/10.1214/009053607000000677.Search in Google Scholar

113. Awad, M, Khanna, R. Support vector regression. Berkeley, CA: Apress; 2015:67–80 pp.10.1007/978-1-4302-5990-9_4Search in Google Scholar

114. Yan, W, Shao, H, Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng 2004.10.1016/j.compchemeng.2003.11.004Search in Google Scholar

115. Feng, R, Shen, W, Shao, H. A soft sensor modeling approach using support vector machines. In: Proceedings of the 2003 American control conference, 2003, vol 5:3702–7 pp.10.1109/ACC.2003.1240410Search in Google Scholar

116. Jain, P, Rahman, I, Kulkarni, B. Development of a soft sensor for a batch distillation column using support vector regression techniques. Chem Eng Res Des 2007;85:283–7. https://doi.org/10.1205/cherd05026.Search in Google Scholar

117. Li, Q, Xing, L, Liu, W, Ba, W. Adaptive soft sensor based on a moving window just-in-time learning ls-svm for distillation processes. IFAC-PapersOnLine 2015;48:51–6.10.1016/j.ifacol.2015.12.099Search in Google Scholar

118. Kaneko, H, Funatsu, K. Application of online support vector regression for soft sensors. AIChE J 2014;60:600–12. https://doi.org/10.1002/aic.14299.Search in Google Scholar

119. Liu, Y, Chen, J. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes. J Process Contr 2013;23:793–804.10.1016/j.jprocont.2013.03.008Search in Google Scholar

120. Mihalache, S, Popescu, M. Application for testing control configurations of binary distillation columns. In: Proceedings of the 7th conference on 7th WSEAS international conference on systems theory and scientific computation. World Scientific and Engineering Academy and Society (WSEAS); 2007, vol 7:127–32 pp.Search in Google Scholar

121. Ahmed, DF, Khalaf, AH. Artificial neural networks controller for crude oil distillation column of Baiji refinery. J Chem Eng Process Technol 2016;7:1–9. https://doi.org/10.4172/2157-7048.1000272.Search in Google Scholar

122. Wu, W, Hsieh, C-L, Shi, B, Yang, X, Yan, L-X. Plantwide control for optimal operation of industrial-scale crude distillation unit processes. Chem Eng Commun 2018;205:581–95. https://doi.org/10.1080/00986445.2017.1404991.Search in Google Scholar

123. Mittal, V, Zhang, J, Yang, X, Xu, Q. E3 analysis for crude and vacuum distillation system. Chem Eng Technol 2011;34:1854–63.10.1002/ceat.201100242Search in Google Scholar

124. Arjmand, M, Moreno, L, Liu, L. Energy saving in crude oil atmospheric distillation columns by modifying the vapor feed inlet tray. Chem Eng Technol 2011;34:1359–67. https://doi.org/10.1002/ceat.201000277.Search in Google Scholar

125. Anitha, K, Shuwana, T, Kumar, VR. Simulation of atmospheric and vacuum crude units using aspen plus. Petrol Sci Technol 2011;29:1885–94. https://doi.org/10.1080/10916461003663057.Search in Google Scholar

126. Fruehauf, PS, Mahoney, DP. Distillation column control design using steady state models: usefulness and limitations. ISA (Instrum Soc Am) Trans 1993;32:157–75. https://doi.org/10.1016/0019-0578(93)90038-x.Search in Google Scholar

127. Luyben, WL. Guides for the selection of control structures for ternary distillation columns. Ind Eng Chem Res 2005;44:7113–9. https://doi.org/10.1021/ie058015z.Search in Google Scholar

128. Popescu, M, Patrascioiu, C, Mihalache, S, Baiesu, A. New control strategies for quality of the separated products of a butylene-butane distillation column internal model control algorithm. Rev Chim (Bucharest) 2013;64:886–93.Search in Google Scholar

129. Pantelides, C. Speedup-recent advances in process simulation. Comput Chem Eng 1988;12:745–55.10.1016/0098-1354(88)80012-7Search in Google Scholar

130. Wahid, A, Adi, R. Modeling and control of multivariable distillation column using model predictive control using unisim. Sinergi: J Tek Mercu Buana 2016;20:14–20.10.22441/sinergi.2016.1.003Search in Google Scholar

131. Haydary, J, Pavlík, T. Steady-state and dynamic simulation of crude oil distillation using aspen plus and aspen dynamics. Petrol Coal 2009;51:100.Search in Google Scholar

132. Mihalache, S, Popescu, M. Modern method of generating the best control structure for binary distillation columns. In: Proceedings of the 11th WSEAS international conference on SYSTEMS, Agios Nikolaos. Greece: Crete Island; 2007:75–80 pp.Search in Google Scholar

133. Ramli, NM, Hussain, MA, Jan, BM, Abdullah, B. Composition prediction of a debutanizer column using equation based artificial neural network model. Neurocomputing 2014;131:59–76.10.1016/j.neucom.2013.10.039Search in Google Scholar

134. Patil, SR, Ghate, V. Generalized regression neural network based on soft sensor for multicomponent distillation column. Int J Comput Commun Eng 2015;4:371.10.17706/IJCCE.2015.4.6.371-378Search in Google Scholar

135. Giwa, A, Bello, A, Giwa, SO. Artificial neural network modeling of a reactive distillation process for biodiesel production. Int J Sci Eng Res 2015;6:1175–91.Search in Google Scholar

Received: 2020-07-13
Accepted: 2021-02-24
Published Online: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/cppm-2020-0070/html
Scroll to top button