Home Brazil-Malvinas Confluence in the South-West Atlantic Ocean: phytoplankton species, life forms and trophic mode
Article
Licensed
Unlicensed Requires Authentication

Brazil-Malvinas Confluence in the South-West Atlantic Ocean: phytoplankton species, life forms and trophic mode

  • Rafael Henrique de Moura Falcão

    Rafael Henrique de Moura Falcão: a Licentiate degree in Biological Science (2019) at Federal Rural University of Pernambuco (UFRPE) and a Master’s degree (2022) in Biological Oceanography at Federal University of Pernambuco (UFPE); currently a PhD student in Biodiversity at UFRPE; acts in Phycology, with an emphasis on systematics and ecology of marine and freshwater phytoplankton.

    ORCID logo
    , Pedro Augusto Mendes de Castro Melo

    Pedro Augusto Mendes de Castro Melo: a Bachelor’s degree in Biological Science/Environmental Science (2006), a Master’s degree (2009) and a PhD (2013) in Biological Oceanography at Federal University of Pernambuco (UFPE); currently Assistant Professor in Oceanography Department at UFPE and advisor of Master’s and PhDs in post-graduation courses; acts in Biological Oceanography with an emphasis on plankton systematics and ecology, marine microbiology, primary and secondary productivity, and coastal and marine systems monitoring.

    ORCID logo EMAIL logo
    , Moacyr Cunha de Araujo Filho

    Moacyr Cunha de Araujo Filho: a Bachelor’s degree in Civil Engineering (UFPE), a Master’s degree in Hydraulics and Sanitation (USP) and a PhD in Physique et Chimie de L’Environnement from Institut National Polytechnique de Toulouse; currently Associate Professor in Oceanography Department at UFPE and advisor of Master’s and PhDs in post-graduation courses; has experience in Oceanography, focusing on fluid mechanics and oceanography, acting on mathematical modelling, coastal and oceanic dynamics and biochemistry cycles.

    ORCID logo
    and Maria da Glória Gonçalves da Silva Cunha

    Maria da Glória Gonçalves da Silva Cunha: a Degree in Biological Sciences (1976), a Master’s degree in Botany from the Federal Rural University of Pernambuco (1982) and a PhD in Biological Oceanography from the Federal University of Pernambuco (2001); currently an Associate Professor IV at the Federal University of Pernambuco, performing teaching, research and extension activities in undergraduate and graduate courses in Oceanography; has experience in the field of Phycology, with an emphasis on systematics and ecology of marine phytoplankton.

    ORCID logo
Published/Copyright: November 2, 2022

Abstract

The Brazil-Malvinas Confluence (BMC) is characterized by high environmental variability and represents a hotspot of phytoplankton biodiversity. This study has investigated the phytoplankton composition in the BMC and a Cold Core Eddy (CCE), with particular reference to the life forms and trophic modes of the species. Vertical hauls were performed between the maximum chlorophyll depth and the surface with a 20-μm mesh plankton net at six sampling points in the BMC (4 hauls) and CCE (2 hauls) during the austral spring (November 2019). Temperature and salinity were determined in situ. The Brazil Current and Malvinas Current in the BMC had different species compositions, and the CCE had greater similarity with the Malvinas Current. Autotrophic organisms (mainly diatoms) and marine planktonic oceanic and/or neritic life forms were predominant in the BMC and the CCE. Heterotrophic dinoflagellates were predominant in the Brazil Current and the CCE, while mixotrophic dinoflagellates in the Malvinas Current were associated with low temperatures and salinities. A high diversity of species was confirmed in the region, mainly associated with marine planktonic oceanic and/or neritic species, and there was a predominance of autotrophic organisms. The temperature conditions in the CCE promoted an increase in species richness in the region.


Corresponding author: Pedro Augusto Mendes de Castro Melo, Department of Oceanography, Federal University of Pernambuco, Recife 50740-550, Brazil, E-mail:

About the authors

Rafael Henrique de Moura Falcão

Rafael Henrique de Moura Falcão: a Licentiate degree in Biological Science (2019) at Federal Rural University of Pernambuco (UFRPE) and a Master’s degree (2022) in Biological Oceanography at Federal University of Pernambuco (UFPE); currently a PhD student in Biodiversity at UFRPE; acts in Phycology, with an emphasis on systematics and ecology of marine and freshwater phytoplankton.

Pedro Augusto Mendes de Castro Melo

Pedro Augusto Mendes de Castro Melo: a Bachelor’s degree in Biological Science/Environmental Science (2006), a Master’s degree (2009) and a PhD (2013) in Biological Oceanography at Federal University of Pernambuco (UFPE); currently Assistant Professor in Oceanography Department at UFPE and advisor of Master’s and PhDs in post-graduation courses; acts in Biological Oceanography with an emphasis on plankton systematics and ecology, marine microbiology, primary and secondary productivity, and coastal and marine systems monitoring.

Moacyr Cunha de Araujo Filho

Moacyr Cunha de Araujo Filho: a Bachelor’s degree in Civil Engineering (UFPE), a Master’s degree in Hydraulics and Sanitation (USP) and a PhD in Physique et Chimie de L’Environnement from Institut National Polytechnique de Toulouse; currently Associate Professor in Oceanography Department at UFPE and advisor of Master’s and PhDs in post-graduation courses; has experience in Oceanography, focusing on fluid mechanics and oceanography, acting on mathematical modelling, coastal and oceanic dynamics and biochemistry cycles.

Maria da Glória Gonçalves da Silva Cunha

Maria da Glória Gonçalves da Silva Cunha: a Degree in Biological Sciences (1976), a Master’s degree in Botany from the Federal Rural University of Pernambuco (1982) and a PhD in Biological Oceanography from the Federal University of Pernambuco (2001); currently an Associate Professor IV at the Federal University of Pernambuco, performing teaching, research and extension activities in undergraduate and graduate courses in Oceanography; has experience in the field of Phycology, with an emphasis on systematics and ecology of marine phytoplankton.

Acknowledgments

We express our sincere thanks to the participating scientists, captain, officers and crew of the R/V NPo. Alte. Maximiano, Brazilian Navy, for carrying out the MEPHYSTO-1 cruise. Special thanks to the members of Laboratório de Fitoplâncton from UFPE, Gabriel Bittencourt Farias and Pedro de Amorim Reis, for plankton sampling during the cruise, and Leandro Cabanéz for technical support during laboratory analysis.

  1. Author contributions: Rafael Henrique de Moura Falcão: conceptualization, analysis of samples in the laboratory, data analysis, writing – original draft preparation. Pedro Melo: conceptualization, writing – review and editing, supervision, project administration. Moacyr Cunha de Araujo Filho: resources and project administration. Maria da Glória Gonçalves da Silva Cunha: conceptualization, writing – review and editing, supervision.

  2. Research funding: This work was supported by the Project MEPHYSTO (Biocomplexidade e Interações Físico-Químico-Biológicas em Múltiplas Escalas no Atlântico Sudoeste), as part of the Brazilian Antarctica Program (CNPq # 442695/2018-7).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Compliance with ethical standards: The authors declare that the procedures were in accordance with the national laws.

References

Angel-Benavides, I.M., Pilo, G.S., Dias, F.B., and Garcia, C.A.E. (2016). Influência de vórtices de mesoescala na concentração de clorofila da Confluência Brasil-Malvinas: mecanismos inferidos por sensoriamento remoto. Braz. J. Aquat. Sci. Technol. 20: 10–20.10.14210/bjast.v20n1.4782Search in Google Scholar

Aquino, E.P., Borges, G.C.P., Silva, M.H., Passavante, J.Z.O., and Cunha, M.G.G.S. (2015). Phytoplankton in a tropical estuary, Northeast Brazil: composition and life forms. Check List. 11: 1633, https://doi.org/10.15560/11.3.1633.Search in Google Scholar

Assmy, P. and Smetacek, V. (2009). Algal blooms. In: Encyclopedia of microbiology. Elsevier, Oxford, pp. 27–41.10.1016/B978-012373944-5.00001-8Search in Google Scholar

Balech, E. (1988). Los dinoflagelados del Atlântico Sudoccidental. Instituto Español de Oceanografia, Madrid.Search in Google Scholar

Barlow, R.G., Aiken, J., Holligan, P.M., Cummings, D.G.D.G., Maritorena, S., and Hooker, S. (2002). Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep Sea Res., Part I 47: 637–660, https://doi.org/10.1016/s0967-0637(01)00081-4.Search in Google Scholar

Barton, A.D., Dutkiewicz, S., Flierl, G., Bragg, J., and Follows, M.J. (2010). Patterns of diversity in marine phytoplankton. Science 327: 1509–1511, https://doi.org/10.1126/science.1184961.Search in Google Scholar PubMed

Bérard-Therriault, L., Poulin, M., and Bossé, L. (1999). Guide d’identification du phytoplancton marin de l’estuaire et du golfe du Saint-Laurent: incluant également certains protozoaires. NRC Research Press. Publication Espéciale Canadienne des Sciences Halieutiques et Aquatiques, Canada.Search in Google Scholar

Brandini, F.P. (1988). Phytoplankton composition and distribution in the southeastern Brazil in relation to the hydrographic regime (July/August 1982). Cienc Cult. 40: 334–341.Search in Google Scholar

Brandini, F.P., Boltovskoy, D., Piola, A., Kocmur, S., Röttgers, R., Abreu, P.C., and Lopes, R.M. (2000). Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30–62°S). Deep Sea Res., Part I 47: 1015–1033, https://doi.org/10.1016/s0967-0637(99)00075-8.Search in Google Scholar

Burkholder, J.M., Gilbert, P.M., and Skelton, H.M. (2008). Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8: 77–93, https://doi.org/10.1016/j.hal.2008.08.010.Search in Google Scholar

Carr, J.M., Hergenrader, G.L., and Troelstrup, N.H. (1986). A simple, inexpensive method for cleaning diatoms. Trans. Am. Microsc. Soc. 105: 152–157, https://doi.org/10.2307/3226387.Search in Google Scholar

Carvalho, A.C.O., Kerr, R., Mendes, C.R.B., Azevedo, J.L.L., and Tavano, V.M. (2021). Phytoplankton strengthen CO2 uptake in the South Atlantic Ocean. Prog. Oceanogr. 190: 102476, https://doi.org/10.1016/j.pocean.2020.102476.Search in Google Scholar

Chelton, D.B., Schlax, M.G., Witter, D.L., and Richma, J.G. (1990). Geosat altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res. 95: 877–17903, https://doi.org/10.1029/jc095ic10p17877.Search in Google Scholar

Chinnadurai, K., Jyothibabu, R., Arunpandi, N., Pandiyarajan, R.S., Rethinam, S., Parthasarathi, S., and Santhikrishnan, S. (2021). Microplankton size structure induced by a warm-core eddy in the western Bay of Bengal: role of Trichodesmium abundance. Oceanologia 63: 283–300, https://doi.org/10.1016/j.oceano.2021.02.003.Search in Google Scholar

Chrétiennot-Dinet, M.J., Billard, C., and Sournia, A. (1990). Chlorarachniophycées, chlorophycées, chrysophycées, cryptophycées, euglénophycées, eustigmatophycées, prasinophycées, prymnésiophycées, rhodophycées et tribophycées. Editions du Centre national de la recherche scientifique, Paris.Search in Google Scholar

Clayton, S., Dutkiewicz, S., Jahn, O., and Follows, M.J. (2013). Dispersal, eddies, and the diversity of marine phytoplankton. Limnol. Oceanogr. Fluid. Environ. 3: 182–197, https://doi.org/10.1215/21573689-2373515.Search in Google Scholar

Crelier, A.M. and Daponte, M.C. (2004). Chaetognatha of the Brazil-Malvinas (Falkland) confluence: distribution and associations. Iheringia. Série Zool. 94: 403–412, https://doi.org/10.1590/s0073-47212004000400008.Search in Google Scholar

Cupp, E.E. (1943). Marine planktonic diatoms of the west coast of North America. Bulletin of the Scripps Institution of Oceanography, California.Search in Google Scholar

Dodge, J.D. (1993). Armoured dinoflagellates in the NE Atlantic during the BOFS cruises. J. Plankton Res. 15: 465–483.10.1093/plankt/15.5.465Search in Google Scholar

Duarte, C.M., Agusti, S., Gasol, J.M., Vaque, D., and Vazquez-Dominguez, E.E. (2000). Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar. Ecol. Prog. Ser. 206: 87–95, https://doi.org/10.3354/meps206087.Search in Google Scholar

Fernandes, L.F. and Brandini, F.P. (1999). Comunidades microplanctônicas no Oceano Atlântico Sul Ocidental: biomassa e distribuição em novembro de 1992. Rev. Bras. Oceanogr. 47: 189–205, https://doi.org/10.1590/s1413-77391999000200007.Search in Google Scholar

Garcia, C.A.E., Sarma, Y.V.B., Mata, M.M., and Garcia, V.M.T. (2004). Chlorophyll variability and eddies in the Brazil–Malvinas confluence region. Deep Sea Res., Part II 51: 159–172, https://doi.org/10.1016/j.dsr2.2003.07.016.Search in Google Scholar

Gayoso, A.N. and Podestá, G.P. (1996). Surface hydrography and phytoplankton of the Brazil-Malvinas currents confluence. J. Plankton Res. 18: 941–951, https://doi.org/10.1093/plankt/18.6.941.Search in Google Scholar

Gomes, A.L., Cunha, C.J., Lima, M.O., Sousa, E.B., Costa-Tavares, V.B., and Martinelli-Lemos, J.M. (2021). Biodiversity and interannual variation of cyanobacteria density in an estuary of the Brazilian Amazon. An Acad. Bras Ciências 93: e20191452, https://doi.org/10.1590/0001-3765202120191452.Search in Google Scholar PubMed

Gómez, F. and Boicenco, L. (2004). An annotated checklist of dinoflagellates in the Black Sea. Hydrobiologia 517: 43–59, https://doi.org/10.1023/b:hydr.0000027336.05452.07.10.1023/B:HYDR.0000027336.05452.07Search in Google Scholar

Gómez, N., Hualde, P.R., Licursi, M.M., and Bauer, D.E. (2004). Spring phytoplankton of Río de la Plata: a temperate estuary of South America. Estuarine, Coastal Shelf Sci. 61: 301–309.10.1016/j.ecss.2004.05.007Search in Google Scholar

Gonçalves-Araujo, R., Souza, M.S., Mendes, C.R.B., Tavano, V.M., Pollery, R.C., and Garcia, C.A.E. (2012). Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. J. Plankton Res. 34: 399–415, https://doi.org/10.1093/plankt/fbs013.Search in Google Scholar

Gordon, A.L. (1989). Brazil-Malvinas confluence-1984. Deep-Sea Res., Part A 36: 359–384, https://doi.org/10.1016/0198-0149(89)90042-3.Search in Google Scholar

Graham, L.E. and Wilcox, L.W. (2000). Algae. Prentice-Hall, Universidade de Michigan, New Jersey.Search in Google Scholar

Gran, H.H. (1908). Diatomeen. In: Brandt, K., and Apstein, C. (Eds.). Nordisches Plankton. Botanischer Teil, pp. 1–146.Search in Google Scholar

Guiry, M.D. and Guiry, G.M. (2022). AlgaeBase. World Wide Web eletronic publication, Available at: http://www.algaebase.org.Search in Google Scholar

Hoppenrath, M., Elbrächter, M., and Drebes, G. (2009). Marine phytoplankton. Selected microphytoplankton species from the North Sea around Helgoland and Sylt. Schweizerbart, Germany.Search in Google Scholar

Hustedt, F. (1961–1966). Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebiete. Otto Koeltz Science Publishers, Germany.Search in Google Scholar

Jagadeesan, L., Kumar, G.S., Rao, D.N., Babu, N.S., and Srinivas, T.N.R. (2019). Role of eddies in structuring the mesozooplankton composition in coastal waters of the western Bay of Bengal. Ecol. Indicat. 105: 137–155, https://doi.org/10.1016/j.ecolind.2019.05.068.Search in Google Scholar

Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Kang, N.S., and Kim, T.H. (2010). Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine plankton food webs. Ocean Sci. J. 45: 65–91, https://doi.org/10.1007/s12601-010-0007-2.Search in Google Scholar

Jyothibabu, R., Karnan, C., Jagadeesan, L., Arunpandi, N., Pandiarajan, R.S., Muraleedharan, K.R., and Balachandran, K.K. (2017). Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Mar. Pollut. Bull. 121: 201–215, https://doi.org/10.1016/j.marpolbul.2017.06.002.Search in Google Scholar PubMed

Komárek, J. and Anagnostidis, K. (2005). Cyanoprokaryota: Teil 2: Oscillatoriales, 2nd ed. 19. Elsevier, München.Search in Google Scholar

Lobo, E. and Leighton, G. (1986). Estructuras comunitarias de las fitocenosia planctonicas de los sistemas de desembocaduras de rios y esteros de la zona central de Chile. Rev. Biol. Mar 22: 1–29.Search in Google Scholar

Mandiola, M.A., Giardino, G.V., Bastida, J., Rodríguez, D.H., and Bastida, R.O. (2015). Marine mammal occurrence in deep waters of the Brazil-Malvinas confluence off Argentina during summer. Mastozool. Neotrop. 22: 397–402.Search in Google Scholar

Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton. In: Buzzati-Traverso, A.A. (Ed.). Perspectives in marine biology. California University Press, Berkeley, pp. 323–350.10.1525/9780520350281-024Search in Google Scholar

Martínez, A. and Ortega, L. (2007). Seasonal trends in phytoplankton biomass over the Uruguayan Shelf. Continent. Shelf Res. 27: 1747–1758, https://doi.org/10.1016/j.csr.2007.02.006.Search in Google Scholar

Matano, R.P., Schlax, M.G., and Chelton, D.B. (1993). Seasonal variability in the southwestern Atlantic. J. Geophys. Res. 98: 18027–18035, https://doi.org/10.1029/93jc01602.Search in Google Scholar

Matteucci, S.D. and Colma, A. (1982). Metodología para el estudio de la vegetación, Vol. 22. Secretaria General de la Organización de los Estados Americanos, Washington DC.Search in Google Scholar

Melo, P.A.M.C., Otsuka, A.Y., Grego, C.K.S., Eskinazi-Leça, E., Aquino, E.P., Feitosa, F.A.N., Farias, G.B., Borges, G.C.P., Silva, K.H.F., Ferreira, L.C., et al.. (2021). Fitoplâncton marinho tropical. In: Viana, D.L., Oliveira, J.E.L., Hazin, F.H.V., and Souza, M.A.C. (Eds.). Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil. Via Design Publicações. Brazil, pp. 42–65.Search in Google Scholar

Naik, R.K., Hegde, S., and Anil, A.C. (2011). Dinoflagellate community structure from the stratified environment of the Bay of Bengal, with special emphasis on harmful algal bloom species. Environ. Monit. Assess. 182: 15–30, https://doi.org/10.1007/s10661-010-1855-z.Search in Google Scholar PubMed

Odebrecht, C. and Castello, J.P. (2001). The convergence ecosystem in the Southwest Atlantic. In: Seeliger, U., and Kjerfve, B. (Eds.). Coastal marine ecosystems of Latin America. Springer, Berlin, pp. 147–165.10.1007/978-3-662-04482-7_12Search in Google Scholar

Olguín, H.F., Boltovskoy, D., Carina, B., Lange, C.B., and Brandini, F. (2006). Distribution of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30–61°S). J. Plankton Res. 28: 1107–1128, https://doi.org/10.1093/plankt/fbl045.Search in Google Scholar

Olson, E., Junior, D.J.M., Flierl, G.R., Davis, C.S., Dyhrman, S.T., and Waterbury, J.B. (2015). Mesoscale eddies and Trichodesmium spp. distributions in the southwestern North Atlantic. J. Geophys. Res.: Oceans 120: 4129–4150, https://doi.org/10.1002/2015jc010728.Search in Google Scholar

Peragallo, H. and Peragallo, M. (1897–1908). Diatomées marines de France et des distritos marítimos voisins. M.J. Tempére, Paris.10.5962/bhl.title.68918Search in Google Scholar

Pezzi, L.P., Souza, R.B., Santini, M.F., Miller, A.J., Carvalho, J.T., Parise, C.K., Quadro, M.F., Rosa, E.B., Justino, F., Sutil, U.A., et al.. (2021). Oceanic eddy induced modifications to air–sea heat and CO2 fluxes in the Brazil Malvinas confluence. Science 11: 1–15.10.1038/s41598-021-89985-9Search in Google Scholar

Pielou, E.C. (1967). Mathematical ecology. Wiley, New York.Search in Google Scholar

Piola, A.R., Campos, E.J.D., Möller, O.O., Charo, M., and Martine, C. (2000). Subtropical shelf front off eastern South America. J. Geophys. Res. 105: 6565–6578, https://doi.org/10.1029/1999jc000300.Search in Google Scholar

Sahoo, D. and Kumar, S. (2015). Xanthophyceae, euglenophyceae and dinophyceae. In: Sahoo, D., and Seckbach, J. (Eds.). The algae world. Springer, London, pp. 259–306.10.1007/978-94-017-7321-8_9Search in Google Scholar

Saraceno, M. and Provost, C. (2012). On eddy polarity distribution in the Southwestern Atlantic. Deep Sea Res., Part I 69: 62–69, https://doi.org/10.1016/j.dsr.2012.07.005.Search in Google Scholar

Sathicq, M.B., Gómez, N., Andrinolo, D., Sedán, D., and Donadelli, J.L. (2014). Temporal distribution of cyanobacteria in the coast of a shallow temperate estuary (Río de la Plata): some implications for its monitoring. Environ. Monit. Assess. 186: 7115–7125, https://doi.org/10.1007/s10661-014-3914-3.Search in Google Scholar PubMed

Sathicq, M.B., Bauer, D.E., and Nora Gómez, N. (2015). Influence of El Niño Southern Oscillation phenomenon on coastal phytoplankton in a mixohaline ecosystem on the southeastern of South America: Río de la Plata estuary. Mar. Pollut. Bull. 98: 26–36, https://doi.org/10.1016/j.marpolbul.2015.07.017.Search in Google Scholar PubMed

Satô, S., Paranaguá, M.N., and Eskinazi, E. (1963). On the mechanism of red tide of Trichodesmium in Recife northeastern Brazil, with some considerations of the relation to the human disease, ‘Tamandare fever’. Trab. Inst. Oceanogr. Univ. Recife 5: 7–49.10.5914/tropocean.v5i1.2489Search in Google Scholar

Sazhin, A.F., Artigas, L.F., Nejstgaard, J.C., and Frischer, M.E. (2007). The colonization of two Phaeocystis species (Prymnesiophyceae) by pennate diatoms and other protists: a significant contribution to colony biomass. Biogeochemistry 83: 137–145, https://doi.org/10.1007/s10533-007-9086-2.Search in Google Scholar

Seuront, L., Vincent, D., and Mitchell, J.G. (2006). Biologically induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. J. Mar. Syst. 61: 118–133, https://doi.org/10.1016/j.jmarsys.2005.04.010.Search in Google Scholar

Shannon, C.E. (1948). A mathematical theory of communication. Bull. Syst. Technol. J. 27: 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.Search in Google Scholar

Silva-Cunha, M.G.G. and Eskinazi-Leça, E. (1990). Catálogo das diatomáceas (Bacillariophyceae) da plataforma continental de Pernambuco. Sudene, Recife.Search in Google Scholar

Silva-Cunha, M.G.G., Eskinazi-Leça, E., Borges, G.C.B., Silva, M.H., Aquino, E.P., Amâncio, F., Santiago, M.P., Ferreira, L.C., and Lacerda, S.R. (2019). Estrutura e distribuição espacial e temporal do fitoplâncton da bacia de Sergipe e sul de Alagoas. In: Moreira, D.L., Carneiro, M.E.R., Silva, A.P., and Schwamborn, R. (Eds.). Ambiente pelágico da bacia de Sergipe-Alagoas. Editora Universidade Federal de Alagoas, Brazil, pp. 254–313.Search in Google Scholar

Sournia, A. (1967). Le gênero Ceratium (Peridinien Planctonique) dans le Canal Moçambique: contribution à une révision mondiale première partie. Vie Milieu 18: 441–500.Search in Google Scholar

Tomas, C.R. (1996). Identifying marine diatoms and dinoflagellates. Academic Press, London.Search in Google Scholar

Verity, P.G., Brussaard, C.P., Nejstgaard, J.C., van Leeuwe, M.A., Lancelot, C., and Medlin, L.K. (2007). Current understanding of Phaeocystis ecology and biogeochemistry, and perspectives for future research. Biogeochemistry 83: 311–330, https://doi.org/10.1007/s10533-007-9090-6.Search in Google Scholar

Received: 2022-01-31
Accepted: 2022-10-11
Published Online: 2022-11-02
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bot-2022-0010/html
Scroll to top button