Home Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world
Article
Licensed
Unlicensed Requires Authentication

Allelopathy: An overview from micro- to macroscopic organisms, from cells to environments, and the perspectives in a climate-changing world

  • Marcelo Pedrosa Gomes , Queila Souza Garcia , Leilane Carvalho Barreto , Lúcia Pinheiro Santos Pimenta , Miele Tallon Matheus and Cleber Cunha Figueredo EMAIL logo
Published/Copyright: February 28, 2017
Become an author with De Gruyter Brill

Abstract

Allelopathy is an important ecological phenomenon influencing ecosystem dynamics. Currently, it has gained attention due to the potential applications of allelochemicals in agriculture. Allelopathic interactions have been reported in ecological relationships between plants and microorganisms, and between species of each group. These studies have been relatively descriptive, however, without interconnected views of how these molecules can affect cell biology and how they are integrated into environmental interactions. The present review provides an overview of the history, physiology, and ecological effects of allelopathy, with special focus on its occurrence between macro- and microorganisms and its ecological roles in terrestrial and aquatic environments. We have attempted to examine the interconnections between terrestrial and aquatic systems in relation to the production, dynamics, and ecological effects of allelochemicals and to discuss the possible effects of climate changes on allelopathic interactions.

Acknowledgements

Authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the study grant awarded to M.P.G., L.C.B and M.T.M. and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research productivity scholarships awarded to Q.S.G.

References

Abenavoli M.R., Sorgonà A., Sidari M., Badiani M. & Fuggi A. 2003. Coumarin inhibits the growth of carrot (Daucus carota L.cv. Saint Valery) cells in suspension culture. J. Plant Physiol. 160: 227–238.10.1078/0176-1617-00867Search in Google Scholar

Abrahim D., Braguini W.L., Kelmer-Bracht A.M. & Ishii-Iwamoto E.L. 2000. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 26: 611–624.10.1023/A:1005467903297Search in Google Scholar

Achatz M., Morris E.K., Müller F., Hilker M. & Rillig M.C. 2014. Soil hypha-mediated movement of allelochemicals: Arbuscular mycorrhizae extend the bioactive zone of juglone. Funct. Ecol. 28: 1020–1029.10.1111/1365-2435.12208Search in Google Scholar

Alfredo A.G. & Aquila M.E.A. 2000. Alellopathy: An emerging topic in Ecophysiology. Rev. Bras. Fisiol. Veg. 12: 175–204.Search in Google Scholar

Aliotta G., Cafiero G. & Otero A.M. 2006. Weed germination, seedling growth and their lesson for allelopathy in agriculture, pp. 285–297. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implicans. Springer, Dordrecht.10.1007/1-4020-4280-9_13Search in Google Scholar

Arzul G., Seguel M., Guzman L. & Denn E.E. 1999. Comparison of allelopathic properties in 3 toxic Alexandrium species. J. Exp. Bot. 232: 285–295.10.1016/S0022-0981(98)00120-8Search in Google Scholar

Bais H.P., Vepachedu R., Gilroy S., Callaway R.M. & Vivanco J.M. 2003. Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301: 1377–1380.10.1126/science.1083245Search in Google Scholar PubMed

Barazani O. & Friedman J. 1999. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Microbiol. 27: 741–755.10.1080/07352689991309469Search in Google Scholar

Barto E.K., Weidenhamer J.D., Cipollini D. & Rillig M.C. 2012. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 17: 633–637.10.1016/j.tplants.2012.06.007Search in Google Scholar PubMed

Batish D.R., Singh H.P., Setia N., Kaur S. & Kohli R.K. 2006. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiol. Biochem. 44: 819–827.10.1016/j.plaphy.2006.10.014Search in Google Scholar PubMed

Bentley R. 1999. Secondary metabolite biosynthesis: The first century. Crit. Rev. Biotechnol. 19: 1–40.10.1080/0738-859991229189Search in Google Scholar PubMed

Bertin C., Yang X. & Weston L. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256: 67–83.10.1023/A:1026290508166Search in Google Scholar

Blair A., Weston L., Nissen S., Brunk G. & Hufbauer R., 2009. The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol. Invasions 11: 325–332.10.1007/s10530-008-9250-1Search in Google Scholar

Blair A.C., Nissen S.J., Brunk G.R. & Hufbauer R.A. 2006. A lack of evidence for an ecological role of the putative allelochemical (+/-)-catechin inspotted knapweed invasion success. J. Chem. Ecol. 32: 2327–2331.10.1007/s10886-006-9168-ySearch in Google Scholar PubMed

Blanco J.A. 2007. The representation of allelopathy in ecosystem level forest models. Ecol. Modell. 209: 65–77.10.1016/j.ecolmodel.2007.06.014Search in Google Scholar

Blum U. 2003. Fate of phenolic allelochemicals in soils: The role of soil and rhizosphere microorganisms, pp. 55–72. In: Galindo J.C.G., Macias F.A., Molinillo J.M.G. & Cutler H. (eds), Allelopathy: Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca Raton.10.1201/9780203492789.ch3Search in Google Scholar

Bouhaouel I., Gfeller A., Fauconnier M.L., Rezgui S., Amara H.S. & Jardin P. 2014. Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates. BioControl 60: 425–436.10.1007/s10526-014-9634-3Search in Google Scholar

Braz Filho R. 2010. Phytochemical contribution to development of a emergent country. Quim. Nova 33: 229–239.10.1590/S0100-40422010000100040Search in Google Scholar

Burgos N.R., Talbert R.E., Kim K.S. & Kuk Y.I. 2004. Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J. Chem. Ecol. 30: 671–689.10.1023/B:JOEC.0000018637.94002.baSearch in Google Scholar

Caldwell M.M., Ballaré C.L., Bornman J.F., Flint S.D., Bjorn L.O., Teramura A.H., Kulandaivelu G. & Tevini M. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2: 252–266.10.1039/B211159BSearch in Google Scholar

Carmichael W.W. 1994. The toxins of Cyanobacteria. Sci. Am. 270: 78–86.10.1038/scientificamerican0194-78Search in Google Scholar PubMed

Céspedes C.L., Avila J.G., Martínez A., Serrato B., Calderón-Mugica J.C. & Salgado-Garciglia R. 2006. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J. Agric. Food Chem. 54: 3521–3527.10.1021/jf053071wSearch in Google Scholar PubMed

Chou C. 2006. Introduction to allelopathy, pp. 1–9. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.Search in Google Scholar

Chu C., Mortimer P.E., Wang H., Wang Y., Liu X. & Yu S. 2014. Allelopathic effects of Eucalyptus on native and introduced tree species. For. Ecol. Manage. 323: 79–84.10.1016/j.foreco.2014.03.004Search in Google Scholar

Cipollini D., Rigsby C.M. & Barto E.K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38: 714–727.10.1007/s10886-012-0133-7Search in Google Scholar PubMed

Cruz-Ortega R., Lara-Núñez A. & Anaya A.L. 2007. Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signal. Behav. 2: 269–270.10.4161/psb.2.4.3895Search in Google Scholar PubMed PubMed Central

Dayan F.E., Howell J.L. & Weidenhamer J.D. 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Exp. Bot. 60: 2107–2117.10.1093/jxb/erp082Search in Google Scholar PubMed PubMed Central

de Souza Nascimento C.E., Tabarelli M., da Silva C.A.D., Leal I.R., de Souza Tavares W., Serrão J.E. & Zanuncio J.C. 2014. The introduced tree Prosopis juliflora is a serious threat to native species of the Brazilian Caatinga vegetation. Sci. Total Environ. 481: 108–113.10.1016/j.scitotenv.2014.02.019Search in Google Scholar PubMed

Dewick P.M. 2009. Medicinal natural products: A biosynthetic approach, 3rd ed. John Wiley & Sons Ltd, West Sussex.10.1002/9780470742761Search in Google Scholar

Djurdjevic L., Popovic Z., Mitrovic M., Pavlovic P., Jaric S., Oberan L. & Gajic G. 2008. Dynamics of bioavailable rhizosphere soil phenolics and photosynthesis of Arum maculatum L. in a lime-beech forest. Flora 203: 590–601.10.1016/j.flora.2007.08.006Search in Google Scholar

Duke S.O. & Dayan F.E. 2006. Modes of action of phytotoxins from plants pp. 511–536. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht.10.1007/1-4020-4280-9_23Search in Google Scholar

Falkowski P.G. & Raven J.A., 2013. Aquatic photosynthesis, Second ed. Princeton University Press.Search in Google Scholar

Farhoudi R. & Lee D.J. 2013. Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci. 83: 447–452.10.1007/s40011-012-0137-7Search in Google Scholar

Ferguson J.J. & Rathinasabapathi B. 2003. Allelopathy: how plants suppress other plants [WWW Document]. Flórida IFAS Ext. URLftp://ftp.aphis.usda.gov/foia/FOLDER_10/ AR00036513 Ferguson and Rathinasbapathi.pdf (accessed I.1.15).Search in Google Scholar

Figueredo C.C., Giani A. & Bird D.F. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (Cyanobacteria) bloom occurrence and geographic expansion. J. Phycol. 43: 256–265.10.1111/j.1529-8817.2007.00333.xSearch in Google Scholar

Finkel Z.V., Beardall J., Flynn K.J., Quigg A., Rees T.A. V & Raven J.A. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32: 119–137.10.1093/plankt/fbp098Search in Google Scholar

Fistarol G.O., Legrand C. & Granéli E. 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255: 115–25.10.3354/meps255115Search in Google Scholar

Fitter A. 2003. Making Allelopathy Respectable. Science 301: 1337–1338.10.1126/science.1089291Search in Google Scholar

Flesch G. & Rohmer M. 1988. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur. J. Biochem. 175: 405–411.10.1111/j.1432-1033.1988.tb14210.xSearch in Google Scholar

Friebe A., Roth U., Kück P., Schnabl H. & Schulz M. 1997. Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 44: 979–983.10.1016/S0031-9422(96)00677-2Search in Google Scholar

Fuerst E.P. & Putnam A.R. 1983. Separating the competitive and allelopathic components of interference. J. Chem. Ecol. 9: 937–944.10.1007/BF00982203Search in Google Scholar PubMed

Gagliardo R.W. & Chilton W.S. 1992. Soil transformation of 2(3H)-Benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J. Chem. Ecol. 18: 1683–1691.10.1007/BF02751095Search in Google Scholar PubMed

Gomes M.P., Le Manac’h S.G., Maccario S., Labrecque M., Lucotte M. & Juneau P. 2016. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants. Pestic. Biochem. Physiol. 130: 65–70.10.1016/j.pestbp.2015.11.010Search in Google Scholar PubMed

Gómez-Aparicio L. & Canham C.D. 2008. Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J. Ecol. 96: 447–458.10.1111/j.1365-2745.2007.01352.xSearch in Google Scholar

Gómez-Aparicio L., Zamora R., Gómez J.M., Hódar J.A., Castro J. & Baraza E. 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol. Appl. 14: 1128–1138.10.1890/03-5084Search in Google Scholar

Granéli E., Weberg M. & Salomon P.S. 2008. Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8: 94–102.10.1016/j.hal.2008.08.011Search in Google Scholar

Grisi P.U., Ranal M.A., Gualtieri S.C.J. & Santana D.G. 2012. Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Sci. Agron. 34: 1–9.10.4025/actasciagron.v34i1.11598Search in Google Scholar

Gross E.M. 2003. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22: 313–339.10.1080/713610859Search in Google Scholar

Harbone J.B. 1994. Introduction to Ecological Biochemistry, 4th ed. Academic Press.Search in Google Scholar

Haugland E. & Brandsaeter L. 1996. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 22: 1845–1859.10.1007/BF02028508Search in Google Scholar PubMed

Hejl A.M. & Koste K.L. 2004. Juglone disrupts root plasma membrane H-ATPase activity and impairs water pptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol. 30: 453–471.10.1023/B:JOEC.0000017988.20530.d5Search in Google Scholar

Hong Y., Hu H.Y., Xie X., Sakoda A., Sagehashi M. & Li F.M. 2009. Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 91: 262–269.10.1016/j.aquatox.2008.11.014Search in Google Scholar PubMed

Hortal S., Bastida F., Moreno J.L., Armas C., García C. & Pugnaire F.I. 2015. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient. Soil Biol. Biochem. 88: 48–57.10.1016/j.soilbio.2015.05.009Search in Google Scholar

Houle G. & Filion L. 2003. The effects of lichens on white spruce seedling establishment and juvenile growth in a sprucelichen woodland of subarctic Québec. Écoscience 10: 80–84.10.1080/11956860.2003.11682754Search in Google Scholar

Hussain M.I. & Reigosa M.J. 2011a. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiol. Biochem. 49: 1290–1298.10.1016/j.plaphy.2011.08.007Search in Google Scholar PubMed

Hussain M.I. & Reigosa M.J. 2011b. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. J. Exp. Bot. 62: 4533–4545.10.1093/jxb/err161Search in Google Scholar PubMed PubMed Central

Inderjit & Callaway R.M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256: 1–11.10.1023/A:1026242418333Search in Google Scholar

Inderjit & del Moral R. 1997. Is separating resource competition from allelopathy realistic? Bot. Rev. 63: 221–230.10.1007/BF02857949Search in Google Scholar

Inderjit & Duke S. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529–539.10.1007/s00425-003-1054-zSearch in Google Scholar PubMed

International Allelopathy Society 1996. Constitution. Drawn up during the First World Congress on Allelopathy: a Science for the Future. Cadiz, Spain, 1996. Available at: http://www-ias.uca.es/bylaws.htm#CONSTI, n.d.Search in Google Scholar

Ishii-Iwamoto E.L., Abrahim D., Sert M.A., Bonato C.M., Kelmer-Bracht A.M. & Bracht A. 2006. Mitochondria as a site of allelochemical action, pp. 267–284. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.Search in Google Scholar

Johansson J.F., Paul L.R., Finlay & R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Lett. 48: 1–13.10.1016/j.femsec.2003.11.012Search in Google Scholar PubMed

Jones W.P. & Kinghorn A.D. 2008. Biologically active natural products of the genus Callicarpa. Curr. Bioact. Compd. 4: 5–32.10.2174/157340708784533393Search in Google Scholar PubMed PubMed Central

Jose S. 2002. Black walnut allelopathy: current state of the science. In: Mallik A. & Inderjit (eds), pp. 149–172. Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems SE – 10. Birkhäuser Basel.10.1007/978-3-0348-8109-8_10Search in Google Scholar

Jose S. & Gillespie A.R. 1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Merr.) growth and physiology. Plant Soil 203: 199–206.Search in Google Scholar

Jose S., Williams R. & Zamora D. 2006. Belowground ecological interactions in mixed-species forest plantations. For. Ecol. Manage. 233: 231–239.10.1016/j.foreco.2006.05.014Search in Google Scholar

Jüttner E. 1999. Allelochemical control of natural photoautotrophic biofilms, pp. 43–50. In: Keevil C., Godfree A., Holt D. & Dow C. (eds), Biofilms in the Aquatic Environment. Royal Society of Chemistry, Cambridge.Search in Google Scholar

Kawano T. 2003. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep. 21: 829–37.10.1007/s00299-003-0591-zSearch in Google Scholar PubMed

Kearns K.D. & Hunter M.D. 2001a. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42: 80–86.10.1007/s002480000086Search in Google Scholar PubMed

Keating K.I. 1977. Allelopathic in?uence on blue-green bloom sequence in a eutrophic lake. Science 196: 886–887.10.1126/science.196.4292.885Search in Google Scholar PubMed

Keating K.I. 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.10.1126/science.199.4332.971Search in Google Scholar PubMed

Knaggs A.R. 2003. The biosynthesis of shikimate metabolites. Nat. Prod. Rep. 20: 119–136.10.1039/b100399mSearch in Google Scholar PubMed

Kobayashi K. 2004. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 4: 1–7.10.1111/j.1445-6664.2003.00112.xSearch in Google Scholar

Körner S. & Nicklisch A. 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 38: 862–871.10.1046/j.1529-8817.2002.t01-1-02001.xSearch in Google Scholar

Kulik M.M. 1995. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol. 101: 585–599.10.1007/BF01874863Search in Google Scholar

Lara-Nuñez A., Romero-Romero T., Ventura J.L., Blancas V., Anaya A.L. & Cruz-Ortega R. 2006. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant Cell Environ. 29: 2009–2016.10.1111/j.1365-3040.2006.01575.xSearch in Google Scholar PubMed

Le Pogam P., Herbette G. & Boustie J. 2014. Analysis of lichen metabolites, a variety of approaches, pp. 229–261. In: Upreti D.K., Divakar P.K., Shukla V. & Bajpai R. (eds), Recent Advances in Lichenology. Modern Methods and Approaches in Biomonitoring and Bioprospection.10.1007/978-81-322-2181-4_11Search in Google Scholar

Legrand C., Rengefors K., Fistarol G.O. & Granéli E. 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.10.2216/i0031-8884-42-4-406.1Search in Google Scholar

Lehle F.R. & Putnam A.R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of richards’ function fitted to cumulative cress seed germination curves. Plant Physiol. 69: 1212–1216.10.1104/pp.69.5.1212Search in Google Scholar PubMed PubMed Central

Leu E., Krieger-Liszkay A., Goussias C. & Gross E.M. 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol. 130: 2011–2018.10.1104/pp.011593Search in Google Scholar PubMed PubMed Central

Levizou E.F.I., Karageorgou P., Psaras G.K. & Manetas Y. 2002. Inhibitory effects of water soluble leaf leachates from Dittrichia viscosa on lettuce root growth, statocyte development and graviperception. Flora – Morphol. Distrib. Funct. Ecol. Plants 197: 152–157.10.1078/0367-2530-00025Search in Google Scholar

Li F.M. & Hu H.Y. 2005. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Appl. Environ. Microbiol. 71: 6545–6553.10.1128/AEM.71.11.6545-6553.2005Search in Google Scholar PubMed PubMed Central

Li X., Wang J., Huang D., Wang L. & Wang K. 2011. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe. Plant Soil 341: 383–398.10.1007/s11104-010-0652-3Search in Google Scholar

Li Z.-H., Wang Q., Ruan X., Pan C.-D. & Jiang D.-A., 2010. Phenolics and Plant Allelopathy. Molecules 15: 8933–8952.10.3390/molecules15128933Search in Google Scholar PubMed PubMed Central

Liu B.Y., Jiang P., Zhou A.E., Tian J.R. & Jiang S.Y. 2007. Effect of pyrogallol on the growth and pigment content of cyanobacteria-blooming toxic and nontoxic Microcystis aeruginosa. Bull. Environ. Contam. Toxicol. 78: 499–502.10.1007/s00128-007-9096-8Search in Google Scholar PubMed

Lokajová V., Bačkorová M. & Bačkor M. 2014. Allelopathic effects of lichen secondary metabolites and their naturally occurring mixtures on cultures of aposymbiotically grown lichen photobiont Trebouxia erici (Chlorophyta). South African J. Bot. 93: 86–91.10.1016/j.sajb.2014.03.015Search in Google Scholar

Lotina-Hennsen B., King-Diaz B., Aguilar M.I. & Terrones M.H. 2006. Plant secondary metabolites. Targets and mechanisms of allelopathy, pp. 229–265. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.10.1007/1-4020-4280-9_11Search in Google Scholar

Loydi A., Donath T.W., Eckstein R.L. & Otte A. 2015. Nonnative species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol. Invasions 17: 581–595.10.1007/s10530-014-0750-xSearch in Google Scholar

Macías F., Oliveros-Bastidas A., Marín D., Carrera C., Chinchilla N. & Molinillo J.G. 2008. Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem. Rev. 7: 179–194.10.1007/s11101-007-9062-4Search in Google Scholar

Macias F.A., Marin D., Oliveros-Bastidas A., Varela R.M., Simonet A.M., Carrera C. & Molinillo J.M. 2003. Allelopathy as a new strategy for sustainable ecosystems development. Biol. Sci. Space. 17: 18–23.10.2187/bss.17.18Search in Google Scholar

Macías F.A., Molinillo J.M.G., Galindo J.C.G., Varela R.M., Simonet A.M. & Castellano D. 2001. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 4: 237–255.10.1300/J144v04n02_08Search in Google Scholar

Macias F.A., Molinillo J.M.G., Varela R.M. & Galindo C.G. 2007. Allelopathy – a natural alternative for weed control. Pest Manag. Sci. 63: 327–34.10.1002/ps.1342Search in Google Scholar

Maraschin-Silva F. & Aquila M.E.A. 2005. Potencial alelopático de Dodonaea viscosa (L.) Jacq. Iheringia 60: 91–98.Search in Google Scholar

Maraschin-Silva F. & Aqüila M.E.A. 2006. Contribuição ao estudo do potencial alelopático de espécies nativas. Rev. Árvore 30: 547–555.10.1590/S0100-67622006000400007Search in Google Scholar

Meeks J.C., Elhai J., Thiel T., Potts M., Larimer F., Lamerdin J., Predki P. & Atlas R. 2001. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth. Res. 70: 85–106.10.1023/A:1013840025518Search in Google Scholar

Meier C. & Bowman W. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158: 95–107.10.1007/s00442-008-1124-9Search in Google Scholar

Mishra N.P., Mishra R.K. & Singhal G.S. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102: 903–910.10.1104/pp.102.3.903Search in Google Scholar

Molnár K. & Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforsch. C 65: 157–173.10.1515/znc-2010-3-401Search in Google Scholar

Mulderij G., Mooij W.M., Smolders A.J.P. & Van Donk E. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquat. Bot. 82: 284–296.10.1016/j.aquabot.2005.04.001Search in Google Scholar

Nakai S., Yutaka I. & Hosomi M. 2000. Myriophyllum spicatum released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res. 34: 3026–3032.10.1016/S0043-1354(00)00039-7Search in Google Scholar

Ni G.-Y., Schaffner U., Peng S.-L. & Callaway R. 2010. Acroptilon repens, an Asian invader, has stronger competitive effects on species from America than species from its native range. Biol. Invasions 12: 3653–3663.10.1007/s10530-010-9759-ySearch in Google Scholar

Nilsson M.-C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98: 1–7.10.1007/BF00326083Search in Google Scholar PubMed

Oliva A., Moraes R.M., Watson S.B., Duke S.O. & Dayan F.E. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72: 45–54.10.1006/pest.2002.2582Search in Google Scholar

Orr G. & Jones G.J. 1998. Relashionship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604–1614.10.4319/lo.1998.43.7.1604Search in Google Scholar

Padisák J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of ecology. Arch. Für Hydrobiol. 107: 563–593.Search in Google Scholar

Pratt R. 1940. Studies on Chlorella vulgaris. V. Some properties of the growth inhibitor formed by Chlorella cells. Am. J. Bot. 29: 142–148.10.1002/j.1537-2197.1942.tb13982.xSearch in Google Scholar

Pratt R. 1944. Studies on Chlorella vulgaris. IX. Influence on growth of Chlorella of continous removal of chlorellin from the culture solution. Am. J. Bot. 31: 418–421.10.1002/j.1537-2197.1944.tb08052.xSearch in Google Scholar

Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., Spoehp H.A., Hardin G.J., Milner H.W., Smith J.H.C. & Strain H.H. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99: 351–352.10.1126/science.99.2574.351Search in Google Scholar PubMed

Pratt R. & Fong J. 1940. Studies on Chlorella vulgaris. II Further evidence that Chlorella cells form a growth-inhibiting substance. Am. J. Bot. 27: 431–436.10.1002/j.1537-2197.1940.tb14704.xSearch in Google Scholar

Rengefors K. & Legrand C. 2001. Toxicity in Peridinium aciculiferum – an adaptive strategy to outcompete other winter phytoplankton? Limnol. Oceanogr. 46: 1990–1997.10.4319/lo.2001.46.8.1990Search in Google Scholar

Rice E.L. 1984. Allelopathy, 2nd ed. Academic Press, New York, NY.Search in Google Scholar

Rohmer M. 1999. The discovery of the mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574.10.1039/a709175cSearch in Google Scholar PubMed

Romagni J.G., Allen S.N. & Dayan F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26: 303–313.10.1023/A:1005414216848Search in Google Scholar

Sánchez-Moreiras A.M., de la Peña T.C. & Reigosa M.J. 2008. The natural compound benzoxazolin-2 (3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69: 2172–2179.10.1016/j.phytochem.2008.05.014Search in Google Scholar PubMed

Sánchez-Moreiras A.M., Martinez-Peñalver A. & Reigosa M.J. 2011. Early senescence induced by 2-3 H-benzoxazolinone (BOA) inArabidopsis thaliana. J. Plant Physiol. 168: 863–870.10.1016/j.jplph.2010.11.011Search in Google Scholar PubMed

Schlegel I., Doan N.T., Chazal N. & Smith G.D. 1999. Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J. Appl. Phycol. 10: 471–479.10.1023/A:1008042619686Search in Google Scholar

Schmidt S.K. & Ley R.E. 1999. Microbial competition and soil structure limit the expression of allelochemicals in nature, pp. 339–351. In: Inderjit, Dakshini K. & Foy C. (eds), Principles and Practices in Plant Ecology. CRC Press, Boca Raton.Search in Google Scholar

Schrader K.K., Nanayakkara N.P.D., Tucker C.S., Rimando A.M., Ganzera M. & Schaneberg B.T. 2003. Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69: 5319–5327.10.1128/AEM.69.9.5319-5327.2003Search in Google Scholar PubMed PubMed Central

Scognamiglio M., D’Abrosca B., Esposito A., Pacifico S., Monaco P. & Fiorentino A. 2013. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 12: 803–830.10.1007/s11101-013-9281-9Search in Google Scholar

Sedia E.G. & Ehrenfeld J.G. 2003. Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100: 447–458.10.1034/j.1600-0706.2003.12058.xSearch in Google Scholar

Sene M., Dore T. & Pellissier F. 2000. Effect of phenolic acids in soil under and between rows of a prior sorghum (Sorghum bicolor) crop on germination, emergence and seedling growth of peanut (Arachis hypogea). J. Chem. Ecol. 26: 625–637.10.1023/A:1005420020135Search in Google Scholar

Shannon-Firestone S. & Firestone J. 2015. Allelopathic potential of invasive species is determined by plant and soil community context. Plant Ecol. 216: 491–502.10.1007/s11258-015-0453-0Search in Google Scholar

Stark S., Kyöviita M.-M. & Neumann A.B. 2007. The phenolic compounds in Cladonia lichens are not antimicrobial in soils. Oecologia 152: 299–306.10.1007/s00442-006-0644-4Search in Google Scholar PubMed

Stolte W., Karlsson C., Carlsson P. & Granéli E. 2002. Modeling the increase of nodularin content in Baltic sea Nodularia spumigena during stationary phase in phosphorus limited batch cultures. FEMS Microbiol. Ecol. 41: 211–220.10.1111/j.1574-6941.2002.tb00982.xSearch in Google Scholar

Suikkanen S., Fistarol G.O. & Granéli E. 2005. Effects of cyanobacterial allelochemicals on a natural plankton community. Mar. Ecol. Prog. Ser. 287: 1–9.10.3354/meps287001Search in Google Scholar

Takahashi S. & Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13: 178–82.10.1016/j.tplants.2008.01.005Search in Google Scholar

Talukdar D. 2013. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopath. J. 31: 71–90.Search in Google Scholar

Teerarak M., Laosinwattana C. & Charoenying P. 2010. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Bioresour. Technol. 101: 5677–5684.10.1016/j.biortech.2010.02.038Search in Google Scholar

Thorpe A.S., Thelen G.C., Diaconu A. & Callaway R.M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J. Ecol. 97: 641–645.10.1111/j.1365-2745.2009.01520.xSearch in Google Scholar

Tilman D. 1988. Plant strategies and the structure and dynamics of plant communities. Princeton University Press, Princeton, New Jersey.Search in Google Scholar

Tilman D. 1994. Competition and Biodiversity in Spatially Structured Habitats. Ecology 75: 2–16.10.2307/1939377Search in Google Scholar

Tongma S., Kobayashi K. & Usui K. 1998. Allelopathic activity of Mexican sun?ower (Tithonia diversifolia) in soil. Weed Sci. 46: 432–437.10.1017/S0043174500090858Search in Google Scholar

von Elert E. & Jüttner F. 1997. Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol. Oceanogr. 42: 1796–1802.10.4319/lo.1997.42.8.1796Search in Google Scholar

Waller G.R., Jurzysta M. & Thorne R.L.A. 1993. Allelopathic activity of root saponins from alfalfa (Medicago sativa L.) on weeds and wheat. Bot. Bull. Acad. Sin. 34: 1–11.Search in Google Scholar

Weidenhamer J.D. 1996. Distinguishing resource competition and chemical interference: Overcoming the methodological impasse. Agron. J. 88: 866–875.10.2134/agronj1996.00021962003600060005xSearch in Google Scholar

Willis R.J. 2007. The history of allelopathy. Springer Science & Business Media.Search in Google Scholar

Windust A.J., Quilliam M.A., Wright J.C. & McLachlan J. 1997. Comparative toxicity of the diarrheic shellfish poisons, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35: 1591–1603.10.1016/S0041-0101(97)00047-0Search in Google Scholar

Wolfe J.M. & Rice E.L., 1979. Allelopathic interactions among algae. J. Chem. Ecol. 5: 533–542.10.1007/BF00987838Search in Google Scholar

Wu H., Pratley J., Lemerle D. & Haig T. 1999. Crop cultivars with allelopathic capability. Weed Res. 39: 171–180.10.1046/j.1365-3180.1999.00136.xSearch in Google Scholar

Wurst S., Vender V. & Rillig M. 2010. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecol. 211: 19–26.10.1007/s11258-010-9767-0Search in Google Scholar

Yu J.Q., Ye S.F., Zhang M.F. & Hu W.H. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31: 129–139.10.1016/S0305-1978(02)00150-3Search in Google Scholar

Yu Z.W., Sun W.H. & Guo K.Q. 1992. Allelopathic effects of several aquatic plants on algae. Acta Hydrobiol. Sin. 16: 1–7.Search in Google Scholar

Zeng R.S. 2014. Allelopathy – The solution is indirect. J. Chem. Ecol. 40: 515–516.10.1007/s10886-014-0464-7Search in Google Scholar PubMed

Zhang C., Ling F., Yi Y.L., Zhang H.Y. & Wang G.X. 2014. Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J. Appl. Phycol. 26: 323–332.10.1007/s10811-013-0057-9Search in Google Scholar

Zhang D.J., Zhang J., Yang W.Q. & Wu F.Z. 2010. Potential allelopathic effect of Eucalyptus grandis across a range of plantation ages. Ecol. Res. 25: 13–23.10.1007/s11284-009-0627-0Search in Google Scholar

Zhou Y.H. & Yu J.Q. 2006. Allelochemicals and photosynthesis, pp. 127–139. In: Reigosa M.J., Pedrol N. & González L. (eds), Allelopathy. Springer Netherlands.10.1007/1-4020-4280-9_6Search in Google Scholar

Zhu M., Ma C., Wang Y., Zhang L., Wang H., Yuan Y. & Du K. 2009. Effect of extracts of Chinese pine on its own seed germination and seedling growth. Front. Agric. China 3: 353–358.10.1007/s11703-009-0056-4Search in Google Scholar

Zhu X., Zhang J. & Ma K. 2011. Soil biota reduce allelopathic effects of the invasive Eupatorium adenophorum. PLoS One 6: e25393.10.1371/journal.pone.0025393Search in Google Scholar PubMed PubMed Central

Received: 2016-7-1
Accepted: 2016-11-3
Published Online: 2017-2-28
Published in Print: 2017-2-1

© 2017 Institute of Botany, Slovak Academy of Sciences

Downloaded on 10.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2017-0019/html
Scroll to top button