Home Chemotaxis: how bacteria use memory
Article
Licensed
Unlicensed Requires Authentication

Chemotaxis: how bacteria use memory

  • Nikita Vladimirov and Victor Sourjik
Published/Copyright: September 13, 2009
Biological Chemistry
From the journal Volume 390 Issue 11

Abstract

Bacterial chemotaxis represents one of the simplest and best studied examples of unicellular behavior. Chemotaxis allows swimming bacterial cells to follow chemical gradients in the environment by performing temporal comparisons of ligand concentrations. The process of chemotaxis in the model bacterium Escherichia coli has been studied in great molecular detail over the past 40 years, using a large range of experimental tools to investigate physiology, genetics and biochemistry of the system. The abundance of quantitative experimental data enabled detailed computational modeling of the pathway and theoretical analyses of such properties as robustness and signal amplification. Because of the temporal mode of gradient sensing in bacterial chemotaxis, molecular memory is an essential component of the chemotaxis pathway. Recent studies suggest that the memory time scale has been evolutionary optimized to perform optimal comparisons of stimuli while swimming in the gradient. Moreover, noise in the adaptation system, which results from variations of the adaptation rate both over time and among cells, might be beneficial for the overall chemotactic performance of the population.


Corresponding author

Received: 2009-5-11
Accepted: 2009-7-1
Published Online: 2009-09-13
Published in Print: 2009-11-01

©2009 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Editorial
  2. Highlight: Molecular and Cellular Mechanisms of Memory
  3. Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
  4. Protein carboxyl methylation and the biochemistry of memory
  5. Chemotaxis: how bacteria use memory
  6. Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
  7. Balance of power – dynamic regulation of chromatin in plant development
  8. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
  9. Memory and neural networks on the basis of color centers in solids
  10. Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
  11. The epigenetic bottleneck of neurodegenerative and psychiatric diseases
  12. Protein Structure and Function
  13. Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
  14. Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
  15. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
  16. Genes and Nucleic Acids
  17. CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
  18. Proteolysis
  19. Placental expression of proteases and their inhibitors in patients with HELLP syndrome
  20. Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2009.130/html
Scroll to top button