Home Placental expression of proteases and their inhibitors in patients with HELLP syndrome
Article
Licensed
Unlicensed Requires Authentication

Placental expression of proteases and their inhibitors in patients with HELLP syndrome

  • Stephanie Pildner von Steinburg , Achim Krüger , Thorsten Fischer , Karl-Theodor Mario Schneider and Manfred Schmitt
Published/Copyright: August 10, 2009
Biological Chemistry
From the journal Volume 390 Issue 11

Abstract

In preeclampsia and hemolysis, elevated liver enzymes and low platelet (HELLP) syndrome, impaired trophoblast invasion and excessive fibrin deposition in the placental intervillous space is associated with fetal compromise. However, little information is available whether modulation of placental protease expression – potentially causing impaired trophoblast invasion – is associated with the HELLP syndrome. Total RNA and protein were extracted from placental tissue from 11 females with HELLP syndrome and 8 controls matched for gestational age. mRNA expression of matrix metalloprotease (MMP) -2 and -9, tissue inhibitors of metalloprotease (TIMP) -1, -2, and -3, and urokinase-type plasminogen activator receptor (uPAR) was determined by Northern blotting. Protein expression of MMP-2 and -9, and TIMP-1 and -2 was detected by Western blotting and that of uPA, uPAR, and plasminogen activator inhibitor (PAI) -1 by ELISA. In patients with HELLP syndrome, mRNA expression of MMP-2 and TIMP-2 was decreased, whereas TIMP-1 and -3 levels were unchanged. MMP-9 and uPAR mRNA was undetectable in both groups. Protein expression of all investigated proteolytic factors remained unchanged. Our findings at the mRNA level suggest a decrease in matrix remodeling in placentae from patients with HELLP syndrome compared with control pregnancies, although this is not supported at the protein level.


Corresponding author

Received: 2009-2-6
Accepted: 2009-6-9
Published Online: 2009-08-10
Published in Print: 2009-11-01

©2009 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Editorial
  2. Highlight: Molecular and Cellular Mechanisms of Memory
  3. Highlight: 60th Mosbach Colloquium of the GBM ‘Molecular and Cellular Mechanisms of Memory’
  4. Protein carboxyl methylation and the biochemistry of memory
  5. Chemotaxis: how bacteria use memory
  6. Mechanistic insights in light-induced cAMP production by photoactivated adenylyl cyclase alpha (PACα)
  7. Balance of power – dynamic regulation of chromatin in plant development
  8. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems
  9. Memory and neural networks on the basis of color centers in solids
  10. Dissection of gene regulatory networks in embryonic stem cells by means of high-throughput sequencing
  11. The epigenetic bottleneck of neurodegenerative and psychiatric diseases
  12. Protein Structure and Function
  13. Mechanism of activation of Saccharomyces cerevisiae calcineurin by Mn2+
  14. Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation
  15. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis
  16. Genes and Nucleic Acids
  17. CA/C1 peptidases of the malaria parasites Plasmodium falciparum and P. berghei and their mammalian hosts – a bioinformatical analysis
  18. Proteolysis
  19. Placental expression of proteases and their inhibitors in patients with HELLP syndrome
  20. Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2009.123/html
Scroll to top button