Home Inhibition of bacterial oxidases by formamide and analogs
Article
Licensed
Unlicensed Requires Authentication

Inhibition of bacterial oxidases by formamide and analogs

  • Sayan Gupta and Shyamalava Mazumdar
Published/Copyright: March 27, 2008
Biological Chemistry
From the journal Volume 389 Issue 5

Abstract

The enzymatic activity of Paracoccus denitrificans cytochrome c oxidase (COX) and Escherichia coli cytochrome bo ubiquinol oxidase (QOX) was determined in the presence of formamide, N,N-dimethyl formamide and N,N-dimethyl acetamide. Formamide was found to inhibit the enzyme activity of the oxidases most significantly, whereas the other two compounds inhibited the activity to a lesser extent. The effects of formamide and analogs on enzyme activity were very similar for COX and QOX, indicating that the mechanism of inhibition might be the same for both of these oxidases. The inhibition kinetics followed a non-competitive mechanism. Studies using proteoliposomes of COX and QOX containing the electron entry site of the enzyme directed towards the outside of the vesicles showed that the effect of inhibition by formamide was higher when the inhibitor was present on the outside of the proteoliposome compared to when it was present only in the aqueous core. This indicates that inhibition of enzyme activity by formamide possibly predominantly involves blocking of the water exit pathway in the oxidases.


Corresponding author

Received: 2007-10-24
Accepted: 2008-1-22
Published Online: 2008-03-27
Published in Print: 2008-05-01

©2008 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Guest Editorial
  2. Novel paradigms in vaccine development: from small pox eradication to therapeutic vaccines
  3. Highlight: 3rd Semmering Conference 2007
  4. Adaptive immune responses to hepatitis C virus: from viral immunobiology to a vaccine
  5. Dendritic cell subtypes as primary targets of vaccines: the emerging role and cross-talk of pattern recognition receptors
  6. Novel strategies to identify biomarkers in tuberculosis
  7. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination against latent Mycobacterium tuberculosis infection
  8. Lipopolysaccharide: a tool and target in enterobacterial vaccine development
  9. The coming of age of virus-like particle vaccines
  10. Maintenance of serological memory
  11. Adjuvant activity of type I interferons
  12. Japanese encephalitis vaccines – needs, flaws and achievements
  13. Analysis of the human cytomegalovirus pp65-directed T-cell response in healthy HLA-A2-positive individuals
  14. Non-regulatory CD8+CD45RO+CD25+ T-lymphocytes may compensate for the loss of antigen-inexperienced CD8+CD45RA+ T-cells in old age
  15. Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines
  16. Construction of an encapsulated ESAT-6-based anti-TB DNA vaccine and evaluation of its immunogenic properties
  17. Review
  18. RNA switches regulate initiation of translation in bacteria
  19. Protein Structure and Function
  20. Inhibition of bacterial oxidases by formamide and analogs
  21. Modeling of variant copies of subunit D1 in the structure of photosystem II from Thermosynechococcus elongatus
Downloaded on 11.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2008.059/html
Scroll to top button