Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites
- 
            
            
        P. Juntuek
        
Abstract
In this study, vetiver grass fiber was used as a natural filler in natural rubber (NR) and polylactic acid (PLA) composite. Glycidyl methacrylate grafted natural rubber (NR-g-GMA) was used as a compatibilizer. The main objective of this research is to study the degradability of PLA and PLA composites under soil burial test. It was shown that vetiver grass fiber showed a significant role in the degradability of PLA composites under soil burial condition. Mechanical properties of PLA composites dramatically decreased after burial in soil compared to those of pure PLA. Moreover, addition of vetiver grass fiber at 20 and 30 % (w/w) content led to a significant increase in weight loss of the specimens with increasing burial time. From SEM micrographs, better interfacial adhesion between PLA, vetiver grass fiber, and NR particles was observed with the addition of NR-g-GMA. This indicated that the compatibility of PLA/vetiver/NR can be improved by using NR-g-GMA. Furthermore, mechanical properties of injection molded PLA and PLA composites were compared with those of compression molded samples. Injection molded specimens of neat PLA and PLA composites showed higher tensile strength than compression molded specimens. This may be due to the result of higher fiber orientation along flow direction in injection molding.
References
AbdullahA. M., AndrzejK. B., “Micro Fibre Reinforced PLA and PP Composites: Enzyme Modification, Mechanical and Thermal Properties”, Compos. Sci. Technol., 78, 10–17 (2013) 10.1016/j.compscitech.2013.01.013Suche in Google Scholar
Bledzki, A. K., Jaszkiewicz, A., “Mechanical Performance of Biocomposites Based on PLA and PHBV Reinforced with Natural Fibres – A Comparative Study to PP”, Compos. Sci. Technol., 70, 1687–1696 (2010) 10.1016/j.compscitech.2010.06.005Suche in Google Scholar
Broz, M. E., Vanderhart, D. L. and Washburn, N. R., “Structure and Mechanical Properties of Poly(D,L-lactic acid)/Poly(E-caprolactone) Blends”, Biomater., 24, 4181–4190 (2003) 10.1016/S0142-9612(03)00314-4Suche in Google Scholar PubMed
Carrascoa, F., Pagès, P., Gámez-Pérezc, J., Santanac, O. O. and Maspoch, M. L., “Processing of Poly(lactic acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties”, Polym. Degrad. Stab., 95, 116–125 (2010) 10.1016/j.polymdegradstab.2009.11.045Suche in Google Scholar
Du, Y., Wu, T., Yan, N., Kortschot, M. T. and Farnood, R., “Fabrication and Characterization of Fully Biodegradable Natural Fiber-Reinforced Poly(lactic acid) Composites”, Composites: Part B, 56, 717–723 (2014) 10.1016/j.compositesb.2013.09.012Suche in Google Scholar
Faludi, G., Hári, J., Renner, K., Móczó, J. and Pukánszky, B., “Fiber Association and Network Formation in PLA/Lignocellulosic Fiber Composites”, Compos. Sci. Technol., 77, 67–73 (2013) 10.1016/j.compscitech.2013.01.006Suche in Google Scholar
Faruk, O., Bledzkia, A., Finkb, H. and Sain, M., “Biocomposites Reinforced with Natural Fibers: 2000–2010”, Prog. Polym. Sci., 37, 1552–1596 (2012) 10.1016/j.progpolymsci.2012.04.003Suche in Google Scholar
Gu, S. Y., Zhang, K., Ren, J. and Zhan, H., “Melt Rheology of Polylactide/Poly(butylene adipate-Co-terephthalate) Blends”, Carbohyd. Polym., 74, 79–85 (2008) 10.1016/j.carbpol.2008.01.017Suche in Google Scholar
Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P. and Ruksakulpiwat, Y., “Effect of Glycidyl Methacrylate-Grafted Natural Rubber on Physical Properties of Polylactic Acid and Natural Rubber Blends”, J. Appl. Polym. Sci., 125, 745–754 (2012) 10.1002/app.36263Suche in Google Scholar
Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P. and Ruksakulpiwat, Y., “Glycidyl Methacrylate Grafted Natural Rubber: Synthesis, Characterization and Mechanical Property”, J. Appl. Polym. Sci., 122, 3152–3159 (2011) 10.1002/app.34324Suche in Google Scholar
Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J. and Staiger, M., “Biodegradability of All-Cellulose Composite Laminates” Composites: Part A, 59, 37–44 (2014) 10.1016/j.compositesa.2013.12.012Suche in Google Scholar
Kim, H. S., Kim, H. J., Lee, J. W. and Choi, I. G., “Biodegradability of Bio-Flour Filled Biodegradable Poly(butylene cuccinate) Bio-Composites in Natural and Compost Soil”, Polym. Degrad. Stab., 91, 1117–1127 (2006) 10.1016/j.polymdegradstab.2005.07.002Suche in Google Scholar
Long, J., Michael, P. W. and Jinwen, Z., “Study of Biodegradable Polylactide/Poly(butylene adipate-Co-terephthalate) Blends”, Biomacromolecules, 7, 199–207 (2006) 10.1021/bm050581qSuche in Google Scholar PubMed
Lunt, J., “Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers”, Polym. Degrad. Stab., 59, 145–152 (1998) 10.1016/S0141-3910(97)00148-1Suche in Google Scholar
Masud, S. H., Lawrence, T. D., Amar, K. M. and Manjusri, M., “Chopped Glass and Recycled Newspaper As Reinforcement Fibers in Injection Molded Poly(lactic acid) (PLA) Composites: A Comparative Study”, Compos. Sci. Technol., 66, 1813–1824 (2006) 10.1016/j.compscitech.2005.10.015Suche in Google Scholar
Nina, G., Axel, S. H. and Jorg, M., “Natural and Man-Made Cellulose Fibre-Reinforced Poly(lactic acid) (PLA) Composites: An Overview about Mechanical Characteristics and Application Areas”, Composites: Part A, 40, 810–821 (2009) 10.1016/j.compositesa.2009.04.003Suche in Google Scholar
Oksman, K., Skrifvars, M. and Selin, J. F., “Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites”, Compos. Sci. Technol., 63, 1317–1324 (2003) 10.1016/S0266-3538(03)00103-9Suche in Google Scholar
Ratto, J. A., Stenhouse, P. J., Auerbach, M., Mitchell, J. and Farrell, R., “Processing, Performance and Biodegradability of a Thermoplastic Aliphatic Polyester Starch System”, Polymer, 40, 6777–6788 (1999) 10.1016/S0032-3861(99)00014-2Suche in Google Scholar
Ruksakulpiwat, Y., Srideea, J., Suppakarn, N. and Sutapun, W., “Improvement of Impact Property of Natural Fiber-Polypropylene Composite by Using Natural Rubber and EPDM Rubber”, Composites: Part B, 40, 619–622 (2009) 10.1016/j.compositesb.2009.04.006Suche in Google Scholar
Ruksakulpiwat, Y., Suppakarn, N., Sutapun, W. and Thomthong, W., “Vetiver-Polypropylene Composites: Physical and Mechanical Properties”, Composites: Part A, 38, 590–601 (2007) 10.1016/j.compositesa.2006.02.006Suche in Google Scholar
Sarazin, P., Li, G., Orts, W. J. and Favis, B. D., “Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch”, Polymer, 49, 599–609 (2008) 10.1016/j.polymer.2007.11.029Suche in Google Scholar
Shibata, M., Inoue, Y. and Miyoshi, M., “Mechanical Properties, Morphology, and Crystallization Behavior of Blends of Poly(L-lactide) with Poly(butylene succinate-Co-L-lactate) and Poly(butylene succinate)”, Polymer, 47, 3557–3564 (2006) 10.1016/j.polymer.2006.03.065Suche in Google Scholar
Singh, R. P., Pandey, J. K., Rutot, D. and Degee, P. H., “Dubois PH. Biodegradation of Poly(3-caprolactone)/Starch Blends and Composites in Composting and Culture Environment: The Effect of Compatibilization on the Inherent Biodegradability of the Host Polymer”, Carbohydr. Res., 338, 1759–1769 (2003) 10.1016/S0008-6215(03)00236-2Suche in Google Scholar
Somnuk, U., Eder, G., Phinyocheep, P., Suppakarn, N., Sutapun, W. and Ruksakulpiwat, Y., “Quiescent Crystallization of Natural Fibers Polypropylene Composites”, J. Appl. Polym. Sci., 106, 2997–3006 (2007) 10.1002/app.26883Suche in Google Scholar
Speranza, V., De Meo, A. and Pantani, R., “Thermal and Hydrolytic Degradation Kinetics of PLA in the Molten State”, Polym. Degrad. Stab., 100, 37–41 (2014) 10.1016/j.polymdegradstab.2013.12.031Suche in Google Scholar
Tserki, V., Matzinos, P. and Panayiotou, C., “Effect of Compatibilization on the Performance of Biodegradable Composites Using Cotton Fiber Waste as Filler”, J. Appl. Polym. Sci., 88, 1825–1835 (2003) 10.1002/app.11812Suche in Google Scholar
Van Den Oever, M. J. A., Beck, B. and Müssig, J., “Agrofibre Reinforced Poly(lactic acid) Composites: Effect of Moisture on Degradation and Mechanical Properties”, Composites Part A, 41, 1628–1635 (2010) 10.1016/j.compositesa.2010.07.011Suche in Google Scholar
Wan, Y. Z., Luo, H., He, F., Liang, H., Huang, Y. and Li, X. L., “Mechanical, Moisture Absorption, and Biodegradation Behaviours of Bacterial Cellulose Fibre-Reinforced Starch Biocomposites”, Compos. Sci. Technol., 69, 1212–1217 (2009) 10.1016/j.compscitech.2009.02.024Suche in Google Scholar
Wang, Y., Steinhoff, B., Brinkmann, C. and Alig, I., “In-Line Monitoring of the Thermal Degradation of Poly(L-lactic acid) during Melt Extrusion by UV-VIS Spectroscopy”, Polymer, 49, 1257–65 (2008) 10.1016/j.polymer.2008.01.010Suche in Google Scholar
Wu, D., Zhang, Y., Zhang, M. and Zhou, W., “Phase Behavior and its Viscoelastic Response of Polylactide/Poly(E-caprolactone) Blend”, Euro. Polym. J., 44, 2171–2183 (2008) 10.1016/j.eurpolymj.2008.04.023Suche in Google Scholar
Xie, L., Xu, H., Wang, Z. P., Li, X. J., Chen, J. B., Zhang, Z. J., Yin, H. M., Zhong, G. J., Lei, J. and Li, Z. M., “Toward Faster Degradation for Natural Fiber Reinforced Poly(lactic acid) Biocomposites by Enhancing the Hydrolysis-Induced Surface Erosion” J. Polym. Res., 21, 1–15 (2014) 10.1007/s10965-014-0357-zSuche in Google Scholar
Yokohara, T., Yamaguchi, M., “Structure and Properties for Biomass-Based Polyester Blends of PLA and PBS”, Euro. Polym. J., 44, 677–685 (2008) 10.1016/j.eurpolymj.2008.01.008Suche in Google Scholar
© 2014, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Contents
- Contents
- 4th Multi-Functional Materials and Structure Conference
- Experimental and Computational Investigations of Creep Responses of Wood/PVC Composite Members
- Dispersion Enhancement of Multi-Walled Carbon Nanotubes in Nitrile Rubber
- Mold Filling Simulation Dependence on Material Data Input for Injection Molding Process of Natural Rubber Compound
- Effect of Nanoclay Addition on Morphology and Elastomeric Properties of Dynamically Vulcanized Natural Rubber/Polypropylene Nanocomposites
- Regular Contributed Articles
- A Study of Non-Isothermal Kinetic Reaction for Vulcanization of Chloride Butyl Rubber via Phenol Formaldehyde Resin
- Preparation and Properties of Fluorinated Acrylate Resin Film with Resisting Fluid for Dairy Packaging
- Three-Body Abrasive Wear Behavior of Needle-Punch Nonwoven Jute Fiber Reinforced Epoxy Composites
- Novel Embossing System for Replicating Micro-Structures on Curved Surfaces
- Improved Interfacial Properties of PA6/DE Blends by DE-g-MAH Prepared through Ultrasound Assisted Extrusion
- Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites
- A Study on the Mechanical Property and 3D Fiber Distribution in Injection Molded Glass Fiber Reinforced PA66
- Unlimited Shear as a Source of Information in Polymer Melt Processing
- Feeding an Extruder of a Modified Feed Zone Design with Poly(vinyl chloride) Pellets of Variable Geometric Properties
- Enhance Slower Relaxation Process of Poly(ethyl acrylate) through Internal Plasticization
- PPS News
- PPS News
Artikel in diesem Heft
- Contents
- Contents
- 4th Multi-Functional Materials and Structure Conference
- Experimental and Computational Investigations of Creep Responses of Wood/PVC Composite Members
- Dispersion Enhancement of Multi-Walled Carbon Nanotubes in Nitrile Rubber
- Mold Filling Simulation Dependence on Material Data Input for Injection Molding Process of Natural Rubber Compound
- Effect of Nanoclay Addition on Morphology and Elastomeric Properties of Dynamically Vulcanized Natural Rubber/Polypropylene Nanocomposites
- Regular Contributed Articles
- A Study of Non-Isothermal Kinetic Reaction for Vulcanization of Chloride Butyl Rubber via Phenol Formaldehyde Resin
- Preparation and Properties of Fluorinated Acrylate Resin Film with Resisting Fluid for Dairy Packaging
- Three-Body Abrasive Wear Behavior of Needle-Punch Nonwoven Jute Fiber Reinforced Epoxy Composites
- Novel Embossing System for Replicating Micro-Structures on Curved Surfaces
- Improved Interfacial Properties of PA6/DE Blends by DE-g-MAH Prepared through Ultrasound Assisted Extrusion
- Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites
- A Study on the Mechanical Property and 3D Fiber Distribution in Injection Molded Glass Fiber Reinforced PA66
- Unlimited Shear as a Source of Information in Polymer Melt Processing
- Feeding an Extruder of a Modified Feed Zone Design with Poly(vinyl chloride) Pellets of Variable Geometric Properties
- Enhance Slower Relaxation Process of Poly(ethyl acrylate) through Internal Plasticization
- PPS News
- PPS News