Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
-
Marta Ogorzalek
Abstract
The study was an attempt to develop fabric softener formulations with a markedly higher content of active substances compared to traditional products. The assumption was to design the formulations in such a manner as to eliminate problems associated with the application of cationic surfactants at high concentrations, and to obtain products exhibiting a high level of quality (products characterized by functionality and usability expected by consumers). The selection of magnesium chloride concentration in products of this type was found to be related to the desired product concentration. It was also demonstrated that by adding salt to concentrated fabric softeners, it is possible to regulate their viscosity and dissolution time in water, and also reduce the viscoelastic properties which are undesirable in the process of manufacture of such products.
Kurzfassung
Die Studie war ein Versuch, Weichspülerformulierungen zu entwickeln, die im Vergleich zu herkömmlichen Produkten einen deutlich höheren Wirkstoffgehalt aufweisen. Die Formulierungen wurden so gestaltet, dass die Probleme mit der Anwendung von kationischen Tensiden in hohen Konzentrationen beseitigt und Produkte mit einem hohen Qualitätsniveau (Produkte, die von den Verbrauchern mit Funktionalität und Verwendbarkeit erwartet werden) erhalten werden. Es wurde gefunden, dass die Auswahl der Magnesiumchloridkonzentration in Produkten dieses Typs auf die gewünschte Produktkonzentration bezogen war. Es wurde auch gezeigt, dass es durch Zugabe von Salz zu konzentrierten Wäscheweichspülern möglich ist, deren Viskosität und Auflösungszeit in Wasser zu regulieren und auch die viskoelastischen Eigenschaften zu reduzieren, die bei der Herstellung solcher Produkte unerwünscht sind.
References
1. Murphy, D. S.: Fabric softener technology: A review, J. Surfactants Deterg.18 (2015) 199–204. 10.1007/s11743-014-1658-2Suche in Google Scholar
2. Agarwal, G., Koehl, L., Perwuelz, A. and Lee, K. S.: Interaction of textile parameters, wash-ageing and fabric conditioner with mechanical properties and correlation with textile-hand. II. Relationship between mechanical properties and textile-hand, Fibers Polym.12 (2011) 795–800. 10.1007/s12221-011-0795-8Suche in Google Scholar
3. Agarwal, G., Perwuelz, A., KoehlL. and LeeK. S.: Interaction between the Surface Properties of the Textiles and the Deposition of Cationic Softener, J. Surfactants Deterg.15 (2012) 97–105. 10.1007/s11743-011-1273-4Suche in Google Scholar
4. Wasilewski, T. and Ogorzalek, M.: Influence of isopropanol on quality of fabric softeners, Polish Journal of Commodity Science2 (2009) 89–98.Suche in Google Scholar
5. Lai, K. Y: Liquid detergents, second ed., CRC Press, Boca Raton (2006). 10.1201/9781420027907Suche in Google Scholar
6. Zoller, U: Handbook of Detergents, Part E: Applications, first ed., CRC Press, Boca Raton (2008). 10.1201/9781420014655Suche in Google Scholar
7. Smulders, E: Laundry Detergents, first ed., Wiley, New York (2002). 10.1002/3527600450Suche in Google Scholar
8. Zieba, M., Małysa, A., Wasilewski, T. and Ogorzalek, M.: Effects of Chemical Structure of Silicone Polyethers Used As Fabric Softener Additives on Selected Utility Properties of Cotton Fabric, Autex Res. J. (2018). 10.1515/aut-2018-0009Suche in Google Scholar
9. Wasilewski, T., Żuchowski, J., Ogorzalek, M., Klimaszewska, E. and Cheba, M.: Improving Quality of Fabric Softeners by Application of Silicone Derivative, Polish Journal of Commodity Science4 (2016) 185–194. 10.19202/j.cs.2016.04.18Suche in Google Scholar
10. Vidrago, C., Abreu, M. J., Soares, G. and Carvalho, H.: Cost and efficiency analysis of commercial softeners in the sewability behavior of cotton fabrics, J. Eng. Fibers Fabr.10 (2015) 21–28. 10.1155/2012/490647Suche in Google Scholar PubMed PubMed Central
11. Seweryn, A., Wasilewski, T. and Bujak, T.: Effect of salt on the manufacturing and properties of hand dishwashing liquids in the coacervate form, Ind. Eng. Chem. Res.55 (2016) 1134–1141. 10.1021/acs.iecr.5b04048Suche in Google Scholar
12. Calero, N., Alfaro, M., Lluch, M. A., Berjano, M. and Muñoz, J.: Rheological behavior and structure of a commercial esterquat surfactant aqueous system, Chem. Eng. Technol.33 (2010) 481–488. 10.1002/ceat.200900496Suche in Google Scholar
13. Mohammadi, M. S.: Colloidal stability of di-chain cationic and ethoxylated nonionic surfactant mixtures used in commercial fabric softeners, Colloids Surf, A Physicochem Eng Asp.288 (2006) 96–102. 10.1016/j.colsurfa.2006.05.005Suche in Google Scholar
14. Portal, P., Kowalski, A. J., Machin, D., Kiratzis, N., Berni, M. G. and Lawrence, C. J.: Rheology and microstructural transitions in the lamellar phase of a cationic surfactant, Langmuir17 (2001) 1331–133710.1021/la0007731Suche in Google Scholar
15. Robinsson, B. H. and Rogerson, M., in: Holberg, K. (Ed.), Handbook of Applied Surface and Colloid Chemistry, Wiley, Chichester (2002).Suche in Google Scholar
16. Groth, C., Tollgerdt, K. and Nydén, M.: Diffusion of solutes in highly concentrated vesicle solutions from cationic surfactants: Effects of chain saturation and ester function, Colloids Surf, A Physicochem Eng Asp.281 (2006) 23–34. 10.1016/j.colsurfa.2006.02.007Suche in Google Scholar
17. Groth, C., Bender, J. and Nydén, M.: Diffusion of water in multilamellar vesicles of dialkyl and dialkyl ester ammonium surfactants, Colloids Surf, A Physicochem Eng Asp.228 (2003) 64–73. 10.1016/S0927-7757(03)00307-8Suche in Google Scholar
18. Calero, N., Alfaro, C., García, C., Berjano, M., Lluch, A. and Muno, J.: Rheological and Microstructural Behavior of a Model Concentrated Fabric Softener, Chem. Eng. Technol.34 (2011)1473–1480. 10.1002/ceat.201100020Suche in Google Scholar
19. Calero, N., Santos, J., Berjano, M. and Munoz, J.: Shear-Induced Structural Transitions in a Model Fabric Softener Containing an Esterquat Surfactant, J. Surfactants Deterg.19 (2016) 609–617. 10.1007/s11743-016-1808-9Suche in Google Scholar
20. Levinson, M.: Levinson, M. I. (1999). Rinse-added fabric softener technology at the close of the twentieth century, J. Surfactants Deterg.2 (1999) 223–235. 10.1007/s11743-999-0077-4Suche in Google Scholar
21. Berret, J. F., Gamez-Corrales, R., Lerouge, S. and Decruppe, J. P.: Shear-thickening transition in surfactant solutions: New experimental features from rheology and flow birefringence, Eur. Phys. J. E.2 (2000) 343–350. 10.1007/s101890050016Suche in Google Scholar
22. Rehage, H. and Hoffmann, H.: Molecular Physics, Viscoelastic surfactant solutions: model systems for rheological research74 (1991), 933–973. 10.1080/00268979100102721Suche in Google Scholar
23. Yang, H., Zhang, S., Liu, H., Xu, X., Zhang, J. and He, P.: Studies on the micellization and intermicellar interaction of CTAB in dilute solution, J. Mater. Sci.40 (2005) 4645–4648. 10.1007/s10853-005-3923-2Suche in Google Scholar
24. Léon, A., Bonn, D., Meunier, J., Al-Kahwaji, A., Greffier, O. and Kellay, H.: Coupling between flow and structure for a lamellar surfactant chase, Phys. Rev. Lett.84 (2000) 1335. 10.1103/PhysRevLett.84.1335Suche in Google Scholar PubMed
25. Basavaraj, M. G., McFarlane, N. L., Lynch, M. L. and Wagner, N. J.: Nanovesicle formation and microstructure in aqueous ditallow ethylesterdimethyl ammonium chloride (DEEDMAC) solutions, J. Colloid Interface Sci.429 (2014) 17–24. 10.1016/j.jcis.2014.04.064Suche in Google Scholar PubMed
26. Ogorzalek, M: Analysis of Physicochemical and Usable Properties of Commercial Fabric Softeners, in: Tichoniuk, M. (Ed.), Current Trends in Commodity Science, Non – Food Products Quality and Safety, University of Economics in Poznan (2017) 20.Suche in Google Scholar
27. Sabın, J., Prieto, G., Ruso, J. M., Hidalgo-Alvarez, R. and Sarmiento, F.: Size and stability of liposomes: a possible role of hydration and osmotic forces, Eur. Phys. J. E.20 (2006) 401–408. 10.1140/epje/i2006-10029-9Suche in Google Scholar PubMed
28. Haq, Z. U., Rehman, N., Ali, F., Khan, N. M., and Ullah, H.: Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte, Journal of Materials, 8 (2017) 1029–1038.Suche in Google Scholar
29. Ulloa, O., Sathyendranath, S. and Platt, T.: Effect of the particle-size distribution on the backscattering ratio in seawater, Appl. Optics.33 (1994) 7070–7077. 10.1364/AO.33.007070Suche in Google Scholar PubMed
30. Wahle, B. and Falkovski: Softeners in textile processing. Part 1: An overview, J. Color. Technol.32 (2002) 118–124. 10.1364/AO.33.007070Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K