Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
-
Sunil Kumar
Abstract
Surfactants play an important role in enhanced oil recovery by reducing the interfacial tension (IFT) between oil and water and changing the wettability of reservoir rock. Studies have been made to determine the effect of temperature, salt, alkali and polymer on IFT in the presence of anionic (SDS), cationic (CTAB) and nonionic (Tween 80) surfactants. The experimental data reveal that with increase in temperature the surface tension and IFT of the above surfactants are significantly reduced. IFT values of surfactants are also affected by the presence of polymer, alkali and salt. The results show that the addition of polymer increases the IFT as well as the contact angle of all the surfactant solutions. On the other hand, the presence of alkali in surfactant solution reduces the IFT between crude oil and water as alkali reacts with the acidic components of crude oil to form additional in-situ surfactants. It has been found that the presence of salt in an aqueous solution of different surfactants reduces IFT and contact angle as the salt increases the tendency of the surface active agents to accumulate at the interface. Sand pack flooding in presence of different chemical combinations has also been investigated. It has been found that the enhanced oil recovery by alkali-surfactant-polymer flooding is better than the corresponding surfactant and surfactant-polymer flooding.
Kurzfassung
Tenside spielen bei der tertiären Erdölförderung (Enhanced Oil Recovery, EOR) eine wichtige Rolle, indem sie die Grenzflächenspannung (IFT) zwischen Öl und Wasser verringern und die Benetzbarkeit des Reservoirgesteins verändern. Es wurden Studien durchgeführt, um die Wirkung von Temperatur, Salz-, Alkali- und Polymergehalt auf die IFT bei Anwesenheit von anionischen (SDS), kationischen (CTAB) und nichtionischen (Tween 80) Tensiden zu bestimmen. Die experimentellen Daten zeigen, dass mit zunehmender Temperatur die Oberflächen- und die Grenzflächenspannung für die obigen Tenside signifikant abnehmen. Die IFT-Werte dieser Tenside werden auch durch die Anwesenheit von Polymer, Alkali und Salz beeinflusst. Die Ergebnisse zeigen, dass die Zugabe von Polymer die IFT sowie den Kontaktwinkel aller Tensidlösungen erhöht. Andererseits verringert die Anwesenheit von Alkali in der Tensidlösung die IFT zwischen Rohöl und Wasser, da Alkali mit den sauren Komponenten des Rohöls reagiert, um zusätzliche In-situ-Tenside zu bilden. Es wurde festgestellt, dass die Anwesenheit von Salz in wässriger Lösung verschiedener Tenside die IFT und den Kontaktwinkel verringert, da durch Salz die Akkumulation der oberflächenaktiven Verbindungen an der Grenzfläche erhöht wird. Untersucht wurden auch Sandpackflutungen in Gegenwart verschiedener chemischer Kombinationen. Es wurde gefunden, dass die tertiäre Erdölgewinnung durch Fluten mit Alkali-Tensid-Polymer-Gemischen höher ist als durch das entsprechende Fluten mit Tensid bzw. mit Tensid-Polymer-Gemischen.
References
1. Ahmadi, M. A., Galedarzadeh, M. and Shadizadeh, S. R.: Wettability Alteration in Carbonate Rocks by Implementing New Derived Natural Surfactant: Enhanced Oil Recovery Applications; Transp. Porous Med.106 (2005) 645–667. 10.1007/s11242-014-0418-0Suche in Google Scholar
2. Babu, K., Pal, N., Bera, A., Saxena, V. K. and Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery; Appl. Surf. Sci.353 (2015) 1126–1136. 10.1016/j.apsusc.2015.06.196Suche in Google Scholar
3. Austad, T. and Milter, J.: Spontaneous imbibition of water into low permeable chalk at different wettabilities using surfactants; Proceedings of the international symposium on oilfield chemistry; Houston, TX, (1997), Feb 18–21. 10.2118/37236-MSSuche in Google Scholar
4. Dong, Z., Wang, X., Liu, Z., Xu, B. and Zhao, J.: Synthesis and physic-chemical properties of anion–nonionic surfactants under the influence of alkali/salt; Colloids and Surfaces A: Physicochemical and Engineering Aspects419 (2013) 233–237. 10.1016/j.colsurfa.2012.11.062Suche in Google Scholar
5. Bera, A., Kumar, T., Ojha, K. and Mandal, A.: Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies; Applied Surface Science284 (2013) 87–99. 10.1016/j.apsusc.2013.07.029Suche in Google Scholar
6. Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models; Colloids and Surfaces A: Physicochemical and Engineering Aspects178 (2001) 1–40. 10.1016/S0927-7757(00)00706-8Suche in Google Scholar
7. Al-Sahhaf, T., Elkamel, A., Ahmed, S.A. and Khan, A.R.: The influence of temperature, pressure, salinity and surfactant concentration on the interfacial tension of the n-octane-water system; Chemical Engineering Communications192 (2005) 667–684. 10.1080/009864490510644Suche in Google Scholar
8. Bai, J., Fan, W., Nan, G., Li, S. and Yu, B.: Influence of interaction between heavy oil components and petroleum sulfonate on the oil-water interfacial tension; Journal of Dispersion Science and Technology31 (2010) 551–556. 10.1080/01932690903167475Suche in Google Scholar
9. Dong, M., Wu, Y. and Li, A.: Sweep efficiency improvement by alkaline flooding for pelican lake heavy oil; Society of Petroleum Engineers (2011) 148971. 10.2118/148971-MSSuche in Google Scholar
10. Samanta, A., Ojha, K. and Manda, A.: Interaction between acidic crude oil and alkali and their effects on enhanced oil recovery; Energy & Fuels25 (4) (2011) 1642–1649. 10.1021/ef101729fSuche in Google Scholar
11. Zhang, J., Nguyen, Q. P., Flaaten, A. and Pope, G. A.: Mechanisms of enhanced natural imbibition with novel chemicals; Society of Petroleum Engineers (2009) 113453. 10.2118/113453-PASuche in Google Scholar
12. Mohammadi, H., Delshad, M. and Pope, G. A.: Mechanistic modeling of alkaline/surfactant/polymer floods; Society of Petroleum Engineers (2009) 110212, 518–570. 10.2118/110212-PASuche in Google Scholar
13. Bera, A., Kissmathulla, S., Ojha, K., Kumar, T. and Mandal, A.: Mechanistic study of wettability of quartz surface induced by nonionic surfactants and interaction between crude oil and quartz in presence of sodium chloride salt; Energy & Fuels26 (2012) 3634–3643. 10.1021/ef300472kSuche in Google Scholar
14. Daripa, P. and Pasa, G.: An Optimal Viscosity Profile in Enhanced Oil Recovery by Polymer Flooding; Inter. J. Eng. Sci.42 (2004) 2029–2039. 10.1016/j.ijengsci.2004.07.008Suche in Google Scholar
15. Goddard, E. D. and Ananthapadmanabhan, K. P.: Interactions of Surfactants with Polymers and Proteins. CRC Press Inc., (1993) Boca Raton, FL. ISBN 9780849367847.Suche in Google Scholar
16. Kwak, J. C. T.: Polymer–surfactant Systems. Dekker, (1998) New York, ISBN 0824702328, 9780824702328.Suche in Google Scholar
17. Avranas, A. and Iliou, P.: Interaction between hydroxypropylmethylcellulose and the anionic surfactants hexane, octane, and decanesulfonic acid sodium salts, as studied by dynamic surface tension measurements; J. Colloid Interface Sci.258 (2003) 97–101. 10.1016/S0021-9797(02)00129-7Suche in Google Scholar
18. Nedjhioui, M., Moulai-Mostefa, N., Morsli, A. and Bensmaili, A.: Combiner effect of polymer/surfactant/oil/alkali on physical chemical properties; Desalination185 (2005) 543–550. 10.1016/j.desal.2005.05.013Suche in Google Scholar
19. D’Errico, G., Ciccarelli, D., Ortona, O., Paduano, L. and Sartorio, R.: Interaction between pentaethylene glycol n-octyl ether and poly (acrylic acid): Effect of the polymer molecular weight; J. Colloid Interface Sci.314 (2007) 242–250. PMid:17561063; 10.1016/j.jcis.2007.05.035Suche in Google Scholar
20. Hawkins, B. F., Taylor, K. C. and Nasr-El-Din, H. A.: Mechanisms of surfactant and polymer enhanced alkaline flooding: application to David Lloydminster and Wainwright Sparky fields; J. Can Petrol Technol.13 (1994) 52–63. 10.2118/94-04-07Suche in Google Scholar
21. Guo, L., Lim, K. B., Poduje, C. M., Daniel, M., Gunn, J. S., Hackett, M. and Miller, S. I.: Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides; Cell95 (1998) 189–198. 10.1016/S0092-8674(00)81750-XSuche in Google Scholar
22. Kumar, S. and Mandal, A.: Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery; Journal of Applied Surface Science372 (2016) 42–51. 10.1016/j.apsusc.2016.03.024Suche in Google Scholar
23. Kumar, S., Panigrahi, P., SawR. K. and Mandal, A.: Interfacial interactions of cationic surfactants and its effect on wettability alteration of oil-wet carbonate rock; Energy Fuels30 (2016) 2846–2857. 10.1021/acs.energyfuels.6b00152Suche in Google Scholar
24. Lin, S. Y., Lin, Y. Y., Chen, E. M., Hsu, C. T. and Kwan, C. C.: A Study of the Equilibrium Surface Tension and the Critical Micelle Concentration of Mixed Surfactant Solutions; Langmuir15 (13) (1999) 4370–4376. 10.1021/la981149fSuche in Google Scholar
25. Standal, S. H., Blokhus, A. M., HaavikJ., SkaugeA. and Barth, T. J.: Partition Coefficients and Interfacial Activity for Polar Components in Oil/Water Model Systems; Colloid Interface Sci.212 (1999) 33. PMid:10072272; 10.1006/jcis.1998.5988Suche in Google Scholar
26. Mandal, A. and Bera, A.: Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery; World Academy of Science, Engineering and Technology6 (2012) 07–25, http://waset.org/publications/10032Suche in Google Scholar
27. Hongyan, W., Xulong, C., Jichao, Z. and Aimei, Z.: Development and application of dilute surfactant-polymer flooding system for Shengli oilfield; J. Pet. Sci. Eng.65 (2009) 45–50. 10.1016/j.petrol.2008.12.021Suche in Google Scholar
28. Lam, C. N. C., Wu, R., Li, D., Hair, M. L. and Neumann, A. W.: Study of advancing & receding contact angle: liquid sorption as a cause of Contact angle hysteresis; Advances in Colloid and Interface Science96 (2002) 169–191. 10.1016/S0001-8686(01)00080-XSuche in Google Scholar
29. Scheer, A. T. and Smolders, C. A.: Dynamic aspects of contact angle measurements on adsorbed protein layers; Journal of Colloid and Interface Science63 (1978) 7–15. 10.1016/0021-9797(78)90029-2Suche in Google Scholar
30. Kumar, S., Saxena, N. and Mandal, A. J.: Synthesis and evaluation of physicochemical properties of anionic polymeric surfactant derived from Jatropha oil for application in enhanced oil recovery; Ind. Eng. Chem.43 (2016) 106. 10.1016/j.jiec.2016.07.055Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K