Novel Methods for Efficacy Testing of Disinfectants – Part II
-
Kannappan Santhakumar
Abstract
The control of infections and maintenance of hygienic conditions are of central importance and the insights gained through several investigations have practical significance today. In contrast, the maintenance of environment and surface disinfection is still controversial and demands novel disinfectants to meet the required criteria. The healthcare centers are fraught with various microorganisms and serve as a point source for multidrug resistance in patients which is more critical to treat. Therefore, it has begun a comprehensive plan in hospitals to focus on disinfection and maintenance of hygiene which is not always appreciated. The urgency to determine the effectiveness of disinfectants is often questioned. The review article shows how the existing problems could be solved by a systematic approach and reports on effective evaluation studies that meet the requirements.
Kurzfassung
Die Kontrolle von Infektionen und die Aufrechterhaltung hygienischer Bedingungen sind von zentraler Bedeutung, und die Erkenntnisse, die durch mehrere Untersuchungen gewonnen wurden, sind heute von praktischer Bedeutung. Im Gegensatz sind Umwelterhalt und Flächendesinfektion nach wie vor kontrovers und erfordern neuartige Desinfektionsmittel, um die erforderlichen Kriterien zu erfüllen. Die Gesundheitszentren sind mit verschiedenen Mikroorganismen behaftet und dienen als Ausgangspunkt für die Multiple-Wirkstoff-Resistenz bei Patienten, die für die Behandlung kritischer sind. Daher haben Krankenhäusern begonnen, umfassende Pläne zur Desinfektion und Pflege der Hygiene zu erstellen, die nicht immer begrüßt werden. Die Dringlichkeit, die Wirksamkeit von Desinfektionsmitteln zu bestimmen, wird häufig bezweifelt. Der Übersichtsartikel zeigt, wie die bestehenden Probleme durch einen systematischen Ansatz gelöst werden können, und berichtet über effektive Evaluierungsstudien, die die Anforderungen erfüllen.
References
1. Cook, A. M.: The Evaluation of Disinfectants, R.S.H.4 (1967) 199–203. 10.1177/146642406708700410Suche in Google Scholar
2. Doll, M., Stevens, M., Bearman, G.: Environmental Cleaning and Disinfection of Patient Areas, International Journal of Infectious Diseases67 (2018) 52–57. PMid:29102556; 10.1016/j.ijid.2017.10.014Suche in Google Scholar
3. Singh, M., Sharma, R., Gupta, P. K., Rana1, J. K., Sharma, M., Taneja, N.: Comparative efficacy evaluation of disinfectants routinely used in hospital practice: India, Indian J Crit Care Med.2012 Jul-Sep; 16(3): 123–129. PMid:23188950; 10.4103/0972-5229.102067Suche in Google Scholar
4. Quinn, M. M., Henneberger, P. K.: Cleaning and disinfecting environmental surfaces in healthcare: Toward an integrated framework for infection and occupational illness prevention, American Journal of Infection Control43 (2015) 424–34. PMid:25792102; 10.1016/j.ajic.2015.01.029Suche in Google Scholar
5. Frota, O. P., Ferreira, A. M., Guerra, O. G., Rigotti, M. A., Andrade, D., Borges, N. M. A., Almeida, M. T. G.: Efficiency of cleaning and disinfection of surfaces: correlation between assessment methods. Rev Bras Enferm [Internet].2017; 70(6):1176–83. PMid:29160477; 10.1590/0034-7167-2016-0608Suche in Google Scholar
6. Kumaraguru, N. and Santhakumar, K.: Studies on solvophobic interactions and micelle formation of some surface active Cr(III) complexes in non-aqueous solvents, Polyhedron25 (2006) 2452–2458. 10.1016/j.poly.2006.02.022Suche in Google Scholar
7. Santhakumar, K., Kumaraguru, N., Arunachalam, S. and Arumugham, M. N.: Kinetics of Fe(II) reduction of cis-halogeneo(dodecylamine)bis(ethylenediamine)cobale(III) complex ion in aqueous solutions, Int. J. Chem. Kinetics38 (2006) 98–105. 10.1002/kin.20142Suche in Google Scholar
8. Tomasino, S. F.: Development and assessment of disinfectant efficacy test methods for regulatory purposes, American Journal of Infection Control41 (2013) S72–S76. PMid:23622754; 10.1016/j.ajic.2012.11.007Suche in Google Scholar
9. Sykes, G.: The Philosophy and Evaluation of Disinfectants and Antiseptis, Journal of Applied Bacteriology, 25: 1–11. 10.1111/j.1365-2672.1962.tb01112.xSuche in Google Scholar
10. Reybrouck, G.: The testing of disinfectants, IntBiodeterior Biodegradation.41 (1998) 269–272. 10.1016/S0964-8305(98)00024-9Suche in Google Scholar
11. Steinhauer, K., Eschenbacher, I., Radischat, N., Detsch, C., Niederweis, M. and Goroncy-bermes, P.: Rapid Evaluation of the Mycobactericidal Efficacy of Disinfectants in the Quantitative Carrier Test EN 14563 by Using Fluorescent Mycobacterium terrae, Appl Environ Microbiol.76 (2010) 546–554. PMid:19948860; 10.1128/AEM.01660-09Suche in Google Scholar
12. Tomasino, S. F., Parker, A., Hamilton, M. A. and Hamilton, G. C.: Performance of the AOAC Use-Dilution Method with Targeted Modifications: Collaborative Study, J AOAC Int.95 (2012) 1618–1628. PMid:23451377; 10.5740/jaoacint.12-170Suche in Google Scholar
13. Langsrud, S. and Sundheim, G.: Factors influencing a suspension test method for antimicrobial activity of disinfectants, J ApplMicrobiol. (1998) 1006–1012. PMid:9871321; 10.1111/j.1365-2672.1998.tb05265.xSuche in Google Scholar
14. Griffiths, P. A., Babb, J. R. and Fraise, A. P.: Mycobactericidal activity of selected disinfectants using a quantitative suspension test, JHosp Infect.41 (1999) 111–121. 10.1016/S0195-6701(99)90048-8Suche in Google Scholar
15. March, J. K., Pratt, M. D., Lowe, C., Cohen, M. N., Benjamin, A., Schaalje, B., Neill, K. L. O. and Robison, R. A.: The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants, Microbiol Open. (2015) 764–773. PMid:26185111; 10.1002/mbo3.277Suche in Google Scholar
16. Setlow, B., Loshon, C., Genest, P., Cowan, A., Setlow, C. and Setlow, P.: Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol, J Appl Microbiol.92 (2002) 362–375. PMid:11849366; 10.1046/j.1365-2672.2002.01540.xSuche in Google Scholar
17. Tennen, R., Setlow, B., Davis, K., Loshon, C. and Setlow, P.: Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid, J Appl Microbiol.89 (2000) 330–338. PMid:10971767; 10.1046/j.1365-2672.2000.01114.xSuche in Google Scholar
18. Jayavel, P., Kumar, J., Santhakumar, K., Magudapathy, P. and Nair, K. G. M.: Investigations on the effect of alpha particle irradiation-induced defects near Pd/n-GaAs interface, Vacuum57 (2000) 51–59. 10.1016/S0042-207X(99)00211-0Suche in Google Scholar
19. Kang, D. H., Song, J. C., Shim, B. Y., Kim, D. W., Kannappan, S. and Lee, C. R.: Characteristic comparison of GaN grown on patterned sapphire substrates following growth time, Jpn. J. Appl. Phys., Part 1, 46 (2007) 2563–2566. 10.1143/JJAP.46.2563Suche in Google Scholar
20. Hussaini, S. N. and Ruby, K. R.: Sporicidal activity of peracetic acid against B. Anthracis spores, Vet Rec.98 (1976) 257–259. PMid:817438; 10.1136/vr.98.13.257Suche in Google Scholar PubMed
21. Whitney, E. A., Beatty, M. E., Taylor, T. H., Weyant, R., Sobel, J., Arduino, M. J. and Ashford, D. A.: Inactivation of Bacillus anthracis Spores, Emerg Infect Dis.9 (2003) 623–627. PMid:12781999; 10.3201/eid0906.020377Suche in Google Scholar PubMed PubMed Central
22. Wood, J. P., Choi, Y. W., Rogers, J. V., Kelly, T. J., Riggs, K. B. and Willenberg, Z. J.: Efficacy of liquid spray decontaminants for inactivation of Bacillus anthracis spores on building and outdoor materials, J Appl Microbiol.110 (2011) 1262–1273. PMid:21332900; 10.1111/j.1365-2672.2011.04980.xSuche in Google Scholar PubMed
23. Rogers, J. V., Choi, Y. W., Richter, W. R., Stone, H. J. and Taylor, M. L.: Bacillus Anthracis Spore Inactivation by Fumigant Decontamination, Appl Biosafety.13 (2008) 89–98. 10.1177/153567600801300203Suche in Google Scholar
24. March, J. K., Pratt, M. D., Lowe, C., Cohen, M. N., Satterfield, B. A., Schaalje, B., O’Neill, K. L. and Robison, R. A.: The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants, Microbiol Open.4 (2015) 764–773. PMid:26185111; 10.1002/mbo3.277Suche in Google Scholar PubMed PubMed Central
25. Sai Saraswathi, V., Kamarudheen, N., Bhaskara Rao, K. V. and Santhakumar, K.: Phytoremediation of dyes using Lagerstroemia Speciosa mediated silver nanoparticles and it biofilm activity against clinical strains Pseudomonas aeruginosa, J. Photochem. Photobiol. B., 168 (2017) 107–116. PMid:28212517; 10.1016/j.photobiol.2017.02.004Suche in Google Scholar
26. Sai Saraswathi, V., Tatsugi, J., ShinP. K. and Santhakumar, K.: Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. Speciosa, J. Photochem. Photobiol., B.167 (2017) 89–98. PMid:28056394; 10.1016/j.j.photobiol.2016.12.032Suche in Google Scholar
27. Piffaretti, F., Santhakumar, K, Forte, E., Van Den Bergh, H. E. and Wagnieres, G. A.: Optical fiber based setup for in vivo measurement of the delayed fluorescence lifetime of oxygen sensors, J. Biomed. Opt.16 (2011) 037005. PMid:21456878; 10.1117/1.3558846Suche in Google Scholar PubMed
28. Tomasino, S. F., Pines, R. M. and Hamilton, M. A.: Performance of the AOAC use-dilution method with targeted modifications: a collaborative study, J AOAC Int.95 (2012) 1618–1628. PMid:23451377; 10.5740/jaoacint.12-170Suche in Google Scholar PubMed
29. Tomasino, S. F., Pines, R. M. and Hamilton, M. A.: Procedural revision to the use-dilution method: establishment of maximum log density value for test microbes on inoculated carriers, J AOAC Int.95 (2012) 1059–1063. PMid:22970572; 10.5740/jaoacint.12-171Suche in Google Scholar PubMed
30. ASTM International (2002) E 2197-02: Standard Quantitative Disk Carrier Test Method for Determining the Bactericidal, Virucidal, Fungicidal, Mycobactericidal and Sporicidal Activities of Liquid Chemical Germicides, West Conshohocken, PA.Suche in Google Scholar
31. Rideal, S. and Walker, J. T. A.: Approved technique of the Rideal-Walker test, Am J public Health, 3 (1913) 575–581. 10.2105/AJPH.3.6.575Suche in Google Scholar
32. England, J. W.: The phenol method of testing disinfectants, J Pharm Sci.2 (1913) 955–958. 10.1002/jps.3080020809Suche in Google Scholar
33. Jensen, V. and Jensen, E.: Determination phenol coefficient method of disinfectants by the cover-slip method, Epidemol Infect.33 (1933) 485–494. 10.1017/S0022172400018829Suche in Google Scholar PubMed PubMed Central
34. Reddish, G. F.: Limitations of the Phenol Coefficient, J Ind Eng Chem.29 (1937) 1044–1047. 10.1021/ie50333a017Suche in Google Scholar
35. Leonard, G. F.: Limitations of phenol coefficient test in determining germicidal activities, J Infect Dis.48 (1931) 358–365. 10.1093/infdis/48.4.358Suche in Google Scholar
36. Garrod, L. P.: A Study of The Chick-Martin Test For Disinfectants, J Hyg.34 (1908) 322–332. 10.1017/S0022172400034665Suche in Google Scholar
37. Chick, H. and Martin, C. J.: The Principles involved in the Standardisation of Disinfectants and the Influence of Organic Matter upon Germicidal value, Epidemol Infect.8 (1908) 654–697. 10.1017/S0022172400016016Suche in Google Scholar PubMed PubMed Central
38. Association of Schools of Public Health, Disinfectant Testing by the Hygienic Laboratory Method, Public Health Rep.36 (1921) 1559–1564. http://www.jstor.org/stable/4576048Suche in Google Scholar
39. Schneider, A.: A Simplified laboratory Method for the Determination of Phenol Coefficient of Disinfectants, J Am Pharm Assoc.9 (2006) 580–586.Suche in Google Scholar
40. Anderson, J. F. and Mc Clintic, T. B. A.: method for the bacteriological standardization of disinfectants, J Infect Dis.8 (1911) 1–26. 10.1093/infdis/8.1.1Suche in Google Scholar
41. Prince, J. and Ayliffe, G. A. J.: In-use testing of disinfectants in hospitals, J Clin Pathol. (1972) 586–589. PMid:5070256; 10.1136/jcp.25.7.586Suche in Google Scholar PubMed PubMed Central
42. Hoffman, P., Bradley, C. and Ayliffe, G.: Disinfectant Testing. In Disinfection in Healthcare (eds P.Hoffman, C.Bradley and G.Ayliffe). Whiley publishers, (2008). page 87–88, published in 2008. 10.1002/9780470698730.ch11Suche in Google Scholar
43. Christensen, E. A., Jepsen, O. B., Kristensen, H. K. and Steen, G.: In-use tests of disinfectants, J Pathol Microbiol Immunol.90 (1982) 95–100. 10.1111/j.1699-0463.1982.tb00088.xSuche in Google Scholar PubMed
44. Prince, J., Deverill, C. E. A. and Ayliffe, G. A. J. A.: membrane filter technique for testing disinfectants, J Clin Pathol.28 (1975) 71–76. PMid:804497; 10.1136/jcp.28.1.71Suche in Google Scholar PubMed PubMed Central
45. Chaidez, C., Lopez, J. and Campo, N. C.: Quaternary ammonium compounds: an alternative disinfection method for fresh produce wash water, J Water Health.5 (2007) 329–333. PMid:17674581; 10.2166/wh.2007.009Suche in Google Scholar PubMed
46. Culloch, E. C. M., Hauge, S. and Migari, H.: The quaternary ammonium compounds in sanitization, Am J Public Health.38 (1949) 493–503. 10.2105/AJPH.38.4.493Suche in Google Scholar PubMed PubMed Central
47. Meers, P. D. and Churcher, G. M.: Membrane filtration in the study of antimicrobial drugs, J Clin Pathol. (1974) 288–291. PMid:4368904; 10.1136/jcp.27.4.288Suche in Google Scholar PubMed PubMed Central
48. Maillard, J.: Testing the effectiveness of disinfectants and sanitisers. Vol. 216, Handbook of hygiene control in the food industry. Woodhead Publishing Limited; 2003. 641–671. 10.1533/9781845690533.3.641Suche in Google Scholar
49. Rideal, S. and Walker, J. T. A.: The standardization of disinfectants, J R San Inst.24 (1903) 424–441. 10.1177/146642400302400320Suche in Google Scholar
50. Baxby, D.: The Chick-Martin test for Disinfectants, Epidemiol. Infect. (2005), 133 (Suppl. 1), S13–S14. PMid:24965238; 10.1017/S0950268805004231Suche in Google Scholar PubMed
51. Chick, H.: An Investigation on the laws of Disinfection, J Hyg (Lond).1908 Jan; 8(1): 92–158. 10.1017/S0022172400006987Suche in Google Scholar
52. Cousins, C. M. and Allan, C. D.: (1967), Sporicidal Properties of Some Halogens. Journal of Applied Bacteriology, 30: 168–174. PMid:4963102; 10.1111/j.1365-2672.1967.tb00286.xSuche in Google Scholar PubMed
53. Clegg, L. F. L.: Laboratory and Field Evaluation of Chemical Sterilizers for Dairy Farms. Journal of Applied Bacteriology, 18(2), (1955) 358–373. 10.1111/J.1365-2672.1955.Tb02091.XSuche in Google Scholar
54. Mitchell, T. G.: Some Factors Affecting the Lisboa Surface Film Test for Detergent –Sterilizer, J. appl. Bact.27 (1), (1964) 45–50. 10.1111/j.1365-2672.1964.tb04809.xSuche in Google Scholar
55. Tilley, F. W.: Phenol coefficients, The American journal of public Health, 11(6) (1921) 513–519. 10.2105/ajph.11.6.513Suche in Google Scholar PubMed PubMed Central
56. Gelinas, P., Goulet, J., Tastayre, G. M., Picard, G. A.: Effect of Temperature and Contact Time on the Activity of Eight Disinfectants – A Classification, Journal of Food Protection, Vol.47, No. 11, Pages 841–847 (November 1984). 10.4315/0362-028X-47.11.841Suche in Google Scholar PubMed
57. Humphreys, P. N.: Testing standards for sporicides, Journal of Hospital Infection77 (2011) 193e198. 10.1016/j.jhin.2010.08.011Suche in Google Scholar PubMed
58. Lawrence, C. A., Carpenter, C. M., Naylor-Foote, A. W. C.: Journal of the American Pharmaceutical Association (Scientific Ed.), 46(8) (1957) 500–505. 10.1002/jps.3030460813Suche in Google Scholar
59. Walton, J. T., Hill, D. J., Protheroe, R. G., Nevill, A. and Gibson, H.: Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes, Journal of Applied Microbiology105 (2008) 309–315. PMid:18410344; 10.1111/j.1365-2672.2008.03805.xSuche in Google Scholar PubMed
60. Pines, R. M., Tomasino, S. F., Cottrill, M. P.: Procedural Revision to the AOAC Germicidal Spray Products as Disinfectants Test Method: Establishment of Minimum and Maximum Log Density Values for Test Microbes on Inoculated Carriers, Journal of AOAC International Vol. 96, No. 3, 2013. PMid:24000742; 10.5740/jaoacint.12-406Suche in Google Scholar
61. Bergan, T. and Lystad, A.: Disinfectant Evaluation by a Capacity Use dilution Test. Journal of Applied Bacteriology, 34 (1971) 741–750. PMid:4947441; 10.1111/j.1365-2672.1971.tb01010.xSuche in Google Scholar PubMed
62. Berry, H. and Bean, H. S.: The Estimation of Bactericidal Activity From Extinction Time Data. Journal of Pharmacy and Pharmacology, 6 (1954) 649–655. PMid:13192625; 10.1111/j.2042-7158.1954.tb10999.xSuche in Google Scholar PubMed
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K