A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
-
Hasnia Reffas
Abstract
Cloud point extraction (CPE) experiments were carried out for separation of copper(II) from aqueous saline sulphate medium with the Schiff's base chelating extractant, N,N′-bis(salicylidene)ethylenediamine (H2SALEN), using the polyethoxylated alcohol Tergitol 15-S-7 as a biodegradable non-ionic surfactant. The obtained results were compared with those previously obtained in presence of Triton X-100. The effects of the main experimental parameters such as pH, extractant concentration, and non-ionic surfactant concentration on the cloud point extraction behavior of copper(II) with H2SALEN were studied and discussed. The use of both systems namely, Triton X-100/H2SALEN/Na2SO4 and Tergitol 15-S-7/H2SALEN/Na2SO4, led to very good extraction efficiency and concentrating ability for Cu(II) pollutant. Indeed, nearly 100 % extraction efficiency with a minimal volume fraction of the surfactant-rich phase, ϕs, was achieved at pH 7.25 and 8 in the systems Tergitol 15-S-7/H2SALEN/Na2SO4 and Triton X-100/H2SALEN/Na2SO4, respectively. The Tergitol 15-S-7/H2SALEN/Na2SO4 extraction system was found to be more efficient for Cu(II) removal compared to Triton X-100/H2SALEN/Na2SO4 system, providing higher concentration factor, Cf, and a lesser separation temperature, Ts. The analysis of the extraction data revealed that the cloud point process of copper proceeds via a cation exchange mechanism. The stoichiometry of the extracted complexes was ascertained by the Yoe-Jones mole ratio method having a composition of 1 : 1 [Cu: H2SALEN].
Kurzfassung
Zur Trennung von Kupfer (II) aus wässrigem, salzigem und sulfathaltigem Medium wurden Trübungspunktextraktionsexperimente (CPE-Experimente) mit dem Schiff'sche-Base-Chelat-Extraktionsmittel N,N′-Bis-(salicyliden)ethylendiamin (H2SALEN) unter Verwendung des polyethoxylierten Alkohols Tergitol 15-S-7 als biologisch abbaubares nichtionisches Tensid durchgeführt. Die erhaltenen Ergebnisse wurden mit denen, die zuvor in Gegenwart von Triton X-100 erhalten wurden, verglichen. Die Auswirkungen der wichtigsten experimentellen Parameter wie pH-Wert, Extraktionsmittelkonzentration und Konzentration des nichtionischen Tensids auf das Trübungspunkt-Extraktionsverhalten von Kupfer (II) mit H2SALEN wurden untersucht und diskutiert. Die beiden Systeme, nämlich Triton X-100/H2SALEN/Na2SO4 und Tergitol 15-S-7/H2SALEN/Na2SO4, zeigten eine sehr gute Extraktionsleistung und Aufkonzentrierung des Schadstoffs Cu(II). Tatsächlich wurde bei den Systemen Tergitol 15-S-7/H2SALEN/Na2SO4 und Triton X-100/H2SALEN/Na2SO4 eine nahezu 100 %ige Extraktionsleistung mit einem minimalen Volumenanteil der oberflächenaktiven Phase ϕs bei den pH-Werten 7,25 und 8 erreicht. Das Extraktionssystem Tergitol 15-S-7/H2SALEN/Na2SO4, erwies sich für die Cu(II)-Entfernung im Vergleich zum Triton X-100/H2SALEN/Na2SO4-System als effizienter. Es besitzt einen höheren Konzentrationsfaktor Cf und eine geringere Trenntemperatur, Ts. Die Analyse der Extraktionsdaten ergab, dass die Trübungsextraktion bei Kupfer über einen Kationenaustauschmechanismus verläuft. Die Stöchiometrie der extrahierten Komplexe hatten eine Zusammensetzung von 1: 1 [Cu: H2SALEN], was durch die Yoe-Jones-Molverhältnismethode bestätigt wurde.
References
1. Scamehorn J. F. , ChristianS. D. and RexT.: In Surfactant-Based Separation Processes; Scamehorn, J. F.Harwell, J. H. Eds. Marcel Dekker, Inc.: New York (1989).Suche in Google Scholar
2. Espinola A. and OliveiraL. F. M.: Flow Electrolysis for Decontaminating Plate Industries Waste Water; Extr. and Proc. for Treat. and Minim. of Waste, TMS: San Francisco, USA1994).Suche in Google Scholar
3. Réguillon A. F. , DrayeM., LebuzitG., ThomasS., CoteG. and GuyA.: Cloud point extraction: An alternative to traditional liquid-liquid extraction for lantanides(III) separation; Talanta63 (2004) 803–806. 10.1016/j.talanta.2003.12.033Suche in Google Scholar
4. Ohashi A. , TsugushiA., ImuraH. and OhashiK.: Cloud point extraction behaviour of Aluminum (III) with 2-methyl-8-quinolinol and 3, 5-dichlorophenol; Anal. Sci.20 (2004) 1091–1093. 10.2116/analsci.20.1091Suche in Google Scholar
5. Afkami A. , BahramM. and GholamiS. Z.: Micelle-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine; Anal. Biochem.336 (2005) 295–299. 10.1016/j.ab.2004.10.026Suche in Google Scholar
6. Watanabe H. and TanakaH. A.: non-ionic surfactant as a new solvent for liquid extraction of Zinc (II) with 1-(2-pyridylazol)-2-naphlhol; Talanta25 (1978) 585–589. 10.1016/0039-9140(78)80151-9Suche in Google Scholar
7. McIntire G. L. : Micelles in analytical chemistry; Crit. Rev. Anal. Chem.21 (1990) 257–278. 10.1080/10408349008051631Suche in Google Scholar
8. Stalikas C. D. : Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis; Trends Anal. Chem.21 (2002) 343–355. 10.1016/S0165-9936(02)00502-2Suche in Google Scholar
9. Hadj Youcef M. , BenabdallahT. and IliktiH.: Study on copper(II) extraction from sulphate medium via cloud- point extraction with N-salicylideneaniline ligand in presence of non-ionic surfactant; Can. J. Anal. Sci. Spectrosc.51 (2006) 267–278.Suche in Google Scholar
10. Luconi M. O. , Fernanda SilvaM., OlsinaR. A. and FernandezL. P.: Cloud point extraction of lead in saliva via use of nonionic PONPE 7.5 without added chelating agents; Talanta51 (2000) 123–129. 10.1016/S0039-9140(99)00252-0Suche in Google Scholar
11. Manzoori J. L. and Karim-NezhadG.: Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination; Anal. Chim. Acta521 (2004) 173–177. 10.1016/j.aca.2004.06.049Suche in Google Scholar
12. Chen J. and TeoK. C.: Determination of cobalt and nickel in water samples by flame atomic absorption spectrometry after cloud point extraction; Anal. Chim. Acta434 (2001) 325–330. 10.1016/S0003-2670(01)00849-2Suche in Google Scholar
13. Doroschuck V. O. , LelyushokS. O., IshchenkoV. B. and KulichenkoS. A.: Flame atomic absorption determination of manganese (II) in natural water after cloud point extraction; Talanta64 (2004) 853–856. 10.1016/j.talanta.2004.03.056Suche in Google Scholar
14. Shimerani F. , AbkenarS. D. and JamaliM. R.: Determination of cadmium(II), copper(II) and zinc (II) in water samples by flame atomic absorption spectrometry after cloud point extraction; Indian. J. Chem. Sect (A)44 (2005) 1211–1214.Suche in Google Scholar
15. Ohashi A. , HashimotoT., ImuraH. and OhashiK.: Cloud point extraction equilibrium of lanthanum(III), europium(III) and lutetium(III) using di(2-ethylhexyl)phosphoric acid and Triton X-100; Talanta73 (2007) 893–898. 10.1016/j.talanta.2007.05.012Suche in Google Scholar
16. Mustafina A. , ElistratovaJ., BurilovA., KnyazevaI., ZairovI. R., AmirovR., SolovievaS. and KonovalovA.: Cloud point extraction of lanthanide(III) ions via use of Triton X-100 without and with water-soluble calixarenes as added chelating agents; Talanta68 (2006) 863–868. 10.1016/j.talanta.2005.06.011Suche in Google Scholar
17. Shemirani F. , AbkenarS. D., MirroshandelA. A., NiasariM. S. and KozaniaR. R.: Preconcentration and speciation of chromium in water samples by atomic absorption spectrometry after cloud-point extraction; Anal. Sci.19 (2003) 1453–1456. 10.2116/analsci.19.1453Suche in Google Scholar
18. Shemirani F. , JamaliM. R., KozaniR. R. and Salavati-NiasariM.: Cloud point extraction and preconcentration for the determination of Cu and Ni in natural water by flame atomic absorption spectrometry; Sep. Sci. Technol.41 (2006) 3065–3077. 10.1080/01496390600785970Suche in Google Scholar
19. Baghban N. , ShabaniA. M. H., DadfarniaS. and JafariA. A.: Flame atomic absorption spectrometric determination of trace amounts of cobalt; J. Braz. Chem. Soc.20 (2009) 832–838. 10.1590/S0103-50532009000500005Suche in Google Scholar
20. Cimmerman Z. , GalicN. and BosnerB.: The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents; Anal. Chim. Acta.343 (1997) 145–153. 10.1016/S0003-2670(96)00587-9Suche in Google Scholar
21. Hadj Youcef M. , BarkatD. and BenabdallahT.: behaviour study of some bidentate o-hydroxy Schiff base extractants in the removal of copper(II) by solvent extraction technique; J. Saudi Chem. Soc.10 (2006) 15–20.Suche in Google Scholar
22. Reffas H. , BenabdallahT. and HadjyoucefM.: Removal of copper(II) from a concentrated sulphate medium by cloud point extraction using an N,N′-Bis(salicylaldehyde)Ethylenediimine di-Schiff base chelating ligand; J. Surfact. Deterg.17 (2014) 27–35. 10.1007/s11743-013-1501-1Suche in Google Scholar
23. Akita S. and TakeuchiH.: Equilibrium distribution of aromatic compounds between aqueous solution and coacervate of non-ionic surfactants; Sep. Sci. Technol.31 (1996) 401–412. 10.1080/01496399608000703Suche in Google Scholar
24. Aggett J. and RichardsonR. A.: Solvent extraction of copper(II) by Schiff's bases; Anal. Chim. Acta.50 (1970) 269–275. 10.1016/0003-2670(70)80066-6Suche in Google Scholar
25. Reffas H. , BenabdallahT., HadjyoucefM. and IliktiH.: Study on cloud point extraction of copper(II) from an aqueous sulfate medium with N,N′-bis(salicylideneaminoethyl)amine polydentate Schiff base into a nonionic surfactant phase; J. Chem. Eng. Data55 (2010) 912–918. 10.1021/je900522gSuche in Google Scholar
26. Reffas H. : Doctoral thesis in Sciences, USTO-MB, Oran, Algeria (2015).27.Suche in Google Scholar
27. Schott H. , AlanE. R. and HansK.: Effect of inorganic Additives on Solutions of Nonionic Surfactants; J. Colloid Int. Sci.98 (1984) 196–201. 10.1016/0021-9797(84)90495-8Suche in Google Scholar
28. Tang A. N. , JiangD. O. and YanX. P.: Cloud point extraction preconcentration for capillary electrophoresis of metal ions; Anal. Chim. Acta.507 (2004) 199–204. 10.1016/j.aca.2003.11.030Suche in Google Scholar
29. Liang P. and YangJ.: Cloud point extraction preconcentration and spectrophotometric determination of copper(II) in food and water samples using amino acids as the complexing agent; J. Food Comp. Analysis23 (2010) 95–99. 10.1016/j.jfca.2009.01.015Suche in Google Scholar
30. Shemirani F. , AbkenarS. D. and KhatouniA.: Determination of lead and copper in water samples by flame atomic absorption spectrometry after cloud point extraction; Bull. Korean Chem. Soc.25 (2004) 1133–1136. 10.5012/bkcs.2004.25.8.1133Suche in Google Scholar
31. Hoshino H. , SaitohT., TaketomiH., YotsuyanagiT., WatanabeH. and TachikawaK.: Micellar solubilization equilibria for some analytical reagents in aqueous non-ionic surfactant solutions; Anal. Chim. Acta147 (1983) 339–345. 10.1016/0003-2670(83)80101-9Suche in Google Scholar
32. Beltran J. L. , CodonyR., GrandesM. and IzquierdoA.: Acid-base and distribution equilibria of 5,7-dichloro-2-methyl-8-hydroxyquinoline in Brij-35 micella media solutions; Talanta40 (1993) 157–165. 10.1016/0039-9140(93)80316-JSuche in Google Scholar
33. Reffas H. , BenabdallahT., HadjyoucefM. and IliktiH.: Extraction of copper(II) from sulphate aqueous medium with N,N′-bis(2-hydroxy-1-naphtalideneaminoethyl)amine polydentate Schiff base in aqueous two phase phase micellar non-ionic surfactant; Tenside Surf. Det.46 (2009)361–367. 10.3139/113.110043Suche in Google Scholar
34. Silva M. F. , FernandezL., OlsinaR. A. and StacchiolaD.: Cloud point extraction, preconcentration and spectrophotometric determination of erbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol; Anal. Chim. Acta.342 (1997) 229–238. 10.1016/S0003-2670(96)00603-4Suche in Google Scholar
35. Ohashi A. , TsuguchiA., ImuraH. and OhashiK.: Synergistic Cloud Point Extraction Behavior of Aluminum(III) with 2-Methyl-8-quinolinol and 3,5-Dichlorophenol; Anal. Sci.20 (2004) 1091–1093. 10.2116/analsci.20.1091Suche in Google Scholar
36. Hinze W. L. : Annual Report No. 92–269, Wake Forest University, North Carolina (1992) p 36.Suche in Google Scholar
37. Horvath W. J. and HuieC. W.: Salting-out surfactant extraction of porphyrins and metalloporphyrin from aqueous non-ionic surfactant solutions; Talanta39 (1992) 487–492. 10.1016/0039-9140(92)80169-ESuche in Google Scholar
38. Cordero B. M. , PavonJ. L. P., PintoC. G. and LaespadaM. E. F.: Cloud point methodology: A new approach for preconcentration and separation in hydrodynamic systems of analysis; Talanta40 (1993) 1703–1710. 10.1016/0039-9140(93)80087-8Suche in Google Scholar
39. Yoe J. H. and JonesJ. L.: Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3, 5-disulphonate; Ind. Eng. Chem. (Anal Ed). 16 (1944) 111–115. 10.1021/i560126a015Suche in Google Scholar
40. Kulichenco S. A. , DoroschukV. O. and LelyoshokS. O.: The cloud point extraction of copper(II)with monocarboxylic acids into non-ionic surfactant phase; Talanta59 (2003) 767–773. 10.1016/S0039-9140(02)00617-3Suche in Google Scholar
41. Citak D. and TuzenM.: A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry; Food and Chem Toxicol.48 (2010) 1399–1404. 10.1016/j.fct.2010.03.008Suche in Google Scholar
42. Satiroglu N. and ArpalC.: Cloud point extraction for determination of trace copper in water samples by flame atomic spectrometry; Microchem Acta162 (2008) 107–112. 10.1007/s00604-007-0904-ySuche in Google Scholar
43. Lemos V. A. , SantosM. S., SantosM. J. S., VieiraD. R. and NovaesC. G.: Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction; Microchem Acta157 (2007) 215–222. 10.1007/s00604-006-0652-4Suche in Google Scholar
44. Schramm L. L. , StasiukE. N. and MarangoniD. G.: Surfactants and their applications; Ann. Rep. Prog. Chem. Sect. (C)99 (2003) 3–48. 10.1039/B208499FSuche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants