Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
-
Lan Wu
Abstract
A new group of cleavable di-anionic surfactants aliphatic glycerol acetal di-sodium sulfosuccinates has been successfully synthesized starting from esterification reaction of aliphatic glycerol acetals with maleic anhydride, followed by sulfonation with sodium sulfite. The prepared surfactants were characterized by Fourier transform infrared spectroscopy (FT-IR), mass spectroscopy (MS) and elemental analysis. The surface active properties of the new surfactants, such as surface tension, critical micelle concentration (CMC), foaming property, and emulsifying power were determined.
Kurzfassung
Es wurde eine neue Gruppe von spaltbaren, di-anionischen Tensiden (aliphatische Glycerolacetal-di-Natriumsulfosuccinate) durch Veresterung von aliphatischen Glycerolacetalen mit Maleinsäureanhydrid und nachfolgender Sulfonierung mit Natriumsulfit, erfolgreich synthetisiert. Die hergestellten Tenside wurden mit der Fourier-Transformations IR-Spektroskopie (FT-IR), der Massenspektroskopie (MS) und der Elementaranalyse charakterisiert. Die oberflächenaktiven Eigenschaften der neuen Tenside wie die Oberflächenspannung, die kritische Mizellenbildungskonzentration (CMC), das Schaum- und Emulgiervermögen wurden bestimmt.
References
1. Myers D. : An overview of surfactant science and technology, in: Surfactant science and technology, 3rd ed., John Wiley & Sons, Hoboken, New Jersey (2005). 10.1002/047174607XSuche in Google Scholar
2. Foley P. , BeachE. S. and ZimmermanJ. B.: Derivation and synthesis of renewable surfactants, Chem. Soc. Rev.41 (2012) 1499–1518. 10.1039/c1cs15217cSuche in Google Scholar
3. Hauthal H. G. : Fourth european detergents conference report: Sustainable detergents and cleaners, progress on ingredients, nanoparticles, analysis, environment, Tenside Surf. Det.46 (2009) 53–62. 10.3139/113.110008Suche in Google Scholar
4. Cintas P. , TagliapietraS., GaudinoE. C., PalmisanoG. and CravottoG.: Glycerol: A solvent and a building block of choice for microwave and ultrasound irradiation procedures, Green Chem.16 (2014) 1056–1065. 10.1039/c3 gc41955jSuche in Google Scholar
5. Gu Y. and JérômeF.: Glycerol as a sustainable solvent for green chemistry, Green Chem.12 (2010) 1127–1138. 10.1039/c001628dSuche in Google Scholar
6. Pagliaro M. and RossiM.: in: Clark,J. H. and Kraus,G. A. (Ed.), The future of glycerol, 2nd ed., Royal Society of Chemistry (2010). 10.1002/cssc.201100024Suche in Google Scholar
7. Canakci M. and SanliH.: Biodiesel production from various feedstocks and their effects on the fuel properties, J. Ind. Microbiol. Biot.35 (2008) 431–441. 10.1007/s10295–008–0337–6Suche in Google Scholar
8. Shahid E. M. and JamalY.: Production of biodiesel: A technical review, Renew. Sust. Energ. Rew.15 (2011) 4732–4745. 10.1016/j.rser.2011.07.079Suche in Google Scholar
9. Sharma Y. , SinghB. and UpadhyayS.: Advancements in development and characterization of biodiesel: A review, Fuel.87 (2008) 2355–2373. 10.1016/j.fuel.2008.01.014Suche in Google Scholar
10. Quispe C. A. , CoronadoC. J. and Carvalho JrJ. A.: Glycerol: Production, consumption, prices, characterization and new trends in combustion, Renew. Sust. Energ. Rew.27 (2013) 475–493. 10.1016/j.rser.2013.06.017Suche in Google Scholar
11. Behr A. , EiltingJ., IrawadiK., LeschinskiJ. and LindnerF.: Improved utilisation of renewable resources: New important derivatives of glycerol, Green Chem.10 (2008) 13–30. 10.1039/b710561dSuche in Google Scholar
12. Pagliaro M. , CiriminnaR., KimuraH., RossiM. and Della PinaC.: From glycerol to value-added products, Angew. Chem. Int. Ed.46 (2007) 4434–4440. 10.1002/anie.200604694Suche in Google Scholar
13. Xu J. , YuW., MaH., WangF., LuF., GhavreM. and GathergoodN.: Catalytic conversion of glycerol, in: XieH. and GathergoodN. (Ed.), The Role of Green Chemistry in Biomass Processing and Conversion, 1st ed., John Wiley & Sons, Hoboken, New Jersey (2013). 10.1002/9781118449400.ch12Suche in Google Scholar
14. Bhangale A. P. , WadekarS. D., KaleS. B. and PratapA. P.: Sophorolipids synthesized using non-traditional oils with glycerol and studies on their surfactant properties with synthetic surfactant, Tenside Surf. Det.51 (2014) 387–396. 10.3139/113.110320Suche in Google Scholar
15. Ghosh S. K. , SahaR., GhoshA., MukherjeeK. and SahaB.: Micellar catalysis on 1, 10-phenanthroline promoted chromic acid oxidation of glycerol in aqueous media, Tenside Surf. Det.49 (2012) 370–375. 10.3139/113.110204Suche in Google Scholar
16. Katryniok B. , KimuraH., SkrzyńskaE., GirardonJ.-S., FongarlandP., CapronM., DucoulombierR., MimuraN., PaulS. and DumeignilF.: Selective catalytic oxidation of glycerol: Perspectives for high value chemicals, Green Chem.13 (2011) 1960–1979. 10.1039/c1gc15320jSuche in Google Scholar
17. Mulligan C. N. : Environmental applications for biosurfactants, Environ. Pollut.133 (2005) 183–198. 10.1016/j.envpol.2004.06.009Suche in Google Scholar
18. Cameotra S. S. and MakkarR. S.: Recent applications of biosurfactants as biological and immunological molecules, Current opinion in microbiology. 7 (2004) 262–266. 10.1016/j.mib.2004.04.006Suche in Google Scholar
19. Alam Z. , DevreeseB. and BeukerJ.: Biosurfactants, in: KosaricN., (Ed.), Surfactant Science Series, Taylor & Francis Group, Boca Raton, (2015).Suche in Google Scholar
20. Gaudin P. , JacquotR., MarionP., PouillouxY. and JérômeF.: Acid-catalyzed etherification of glycerol with long-alkyl-chain alcohols, ChemSusChem. 4 (2011) 719–722. 10.1002/cssc.201100129Suche in Google Scholar
21. Liu F. , VigierK. D. O., Pera-TitusM., PouillouxY., ClacensJ.-M., DecampoF. and JérômeF.: Catalytic etherification of glycerol with short chain alkyl alcohols in the presence of lewis acids, Green Chem.15 (2013) 901–909. 10.1039/C3GC36944GSuche in Google Scholar
22. Shi Y. , DayoubW., Favre-RéguillonA., ChenG.-R. and LemaireM.: Straightforward selective synthesis of linear 1-O-alkyl glycerol and di-glycerol monoethers, Tetrahedron Lett.50 (2009) 6891–6893. 10.1016/j.tetlet.2009.09.134Suche in Google Scholar
23. Sutter M. , SilvaE. D., DuguetN., RaoulY., MétayE. and LemaireM.: Glycerol ether synthesis: A bench test for green chemistry concepts and technologies, Chem. Rev.115 (2015) 8609–8651. 10.1021/cr5004002Suche in Google Scholar
24. Isahak W. N. , RamliZ. A., IsmailM. and YarmoM. A.: Highly selective glycerol esterification over silicotungstic acid nanoparticles on ionic liquid catalyst, Ind. Eng. Chem. Res.53 (2014) 10285–10293. 10.1021/ie501110mSuche in Google Scholar
25. Bossaert W. D. , De VosD. E., Van RhijnW. M., BullenJ., GrobetP. J. and JacobsP. A.: Mesoporous sulfonic acids as selective heterogeneous catalysts for the synthesis of monoglycerides, J. Catal.182 (1999) 156–164. 10.1006/jcat.1998.2353Suche in Google Scholar
26. Kharchafi G. , JérômeF., DouliezJ. P. and BarraultJ.: Facile and regioselective mono- or diesterification of glycerol derivatives over recyclable phosphazene organocatalyst, Green Chem.8 (2006) 710–716. 10.1039/b603091bSuche in Google Scholar
27. Piasecki A. : Alkoxyalkyl-substituted glycerol acetals: New hydrophobic intermediates for surfactant synthesis, J. Am. Oil Chem. Soc.69 (1992) 639–642. 10.1007/BF02635802Suche in Google Scholar
28. Sokolowski A. , BurczykB. and OlesJ.: Acetals and ethers. 11. Solubility of alkyl-substituted 1, 3-dioxolanes and 1, 3-dioxanes in water, J. Phys. Chem.88 (1984) 807–809. 10.1021/j150648a038Suche in Google Scholar
29. Ono D. , MasuyamaA., NakatsujiY., OkaharaM., YamamuraS. and TakedaT.: Preparation, surface-active properties and acid decomposition profiles of a new “soap” bearing a 1, 3-dioxolane ring, J. Am. Oil Chem. Soc.70 (1993) 29–36. 10.1007/BF02545363Suche in Google Scholar
30. Ono D. , YamamuraS., NakamuraM. and TakedaT.: Synthesis and properties of bis (sodium sulfonated ester) types of cleavable surfactants derived from 1-O-alkylglycerols, J. Surfact. Deterg.1 (1998) 201–206. 10.1007/s11743-998-0020-8Suche in Google Scholar
31. Piasecki A. , SokolowskiA., BurczykB., GancarzR. and KotlewskaU.: Synthesis, surface properties, and hydrolysis of chemodegradable anionic surfactants: Diastereomerically pure sodium cis-and trans-(2-n-alkyl-1, 3-dioxan-5-yl) sulfates, Langmuir.13 (1997) 1434–1439. 10.1021/la960207zSuche in Google Scholar
32. Piasecki A. , SokołowskiA., BurczykB. and KotlewskaU.: Synthesis and surface properties of chemodegradable anionic surfactants: Sodium (2-n-alkyl-1, 3-dioxan-5-yl) sulfates, J. Am. Oil Chem. Soc.74 (1997) 33–37. 10.1007/s11746-997-0115-zSuche in Google Scholar
33. Burczyk B. , BanaszczykM., SokolowskiA. and PiaseckiA.: Synthesis and surface properties of oxyethylenated 2-alkyl-5-hydroxymethyl-5-ethyl-1,3-dioxanes, J. Am. Oil Chem. Soc.65 (1988) 1204–1210. 10.1007/BF02660585Suche in Google Scholar
34. Lunkenheimer K. , PiaseckiA., BurczykB. and HirteR.: Adsorption properties of diastereomeric 2-n-alkyl-5-methoxy-1, 3-dioxanes at the air/water interface, Langmuir.16 (2000) 6982–6986. 10.1021/la991160vSuche in Google Scholar
35. Hellberg P.-E. , BergströmK. and HolmbergK.: Cleavable surfactants, J. Surfact. Deterg.3 (2000) 81–91. 10.1007/s11743-000-0118-zSuche in Google Scholar
36. Zhang T. , LiX. and DongJ. X.: Methanesulfonic acid as a more efficient catalyst for the synthesis of lauraldehyde glycerol acetal, Tenside Surf. Det.51 (2014) 516–520. 10.3139/113.110337Suche in Google Scholar
37. Zhang Y. , XuY., QiuS. and YangL.: Synthesis and properties of mono or double long-chain alkanolamine surfactants, J. Surfact. Deterg.16 (2013) 841–848. 10.1007/s11743-013-1488-7Suche in Google Scholar
38. Chen H. and TangS.-b.: Microwave-assisted synthesis and properties of sodium glycol bis-(isocetyl) sulfosuccinate, J. Surfact. Deterg.15 (2012) 245–249. 10.1007/s11743-011-1299-7Suche in Google Scholar
39. Zhu H. L. , HuZ. Y., WangJ. L. and CaoD. L.: Synthesis and properties of alkyl dibenzyl ether quaternary ammonium gemini surfactant, Tenside Surf. Det.52 (2015) 163–169. 10.3139/113.110362Suche in Google Scholar
40. Rosen M. J. : in: Surfactants and interfacial phenomenaed., 3rd ed., John Wiley & Sons, Hoboken, New Jersey, (2004). 10.1002/0471670561Suche in Google Scholar
41. Zhu H.-l. , HuZ.-Y., WangJ.-l. and CaoD.-l.: Synthesis and properties of alkyl dibenzyl ether quaternary ammonium gemini surfactant, Tenside Surf. Det.52 (2015) 163–169. 10.3139/113.110335Suche in Google Scholar
42. Myers D. : Surfactants in solution: Monolayers and micelles, in: Surfactant science and technology, 3rd ed., John Wiley & Sons, Hoboken, New Jersey, (2005). 10.1002/047174607XSuche in Google Scholar
43. Myers D. : Foams and liquid aerosols, in: Surfactant science and technology, 3rd ed., John Wiley & Sons, Hoboken, New Jersey, (2005). 10.1002/047174607XSuche in Google Scholar
44. Myers D. : Emulsions, in: Surfactant science and technology, 3rd ed., John Wiley & Sons, Hoboken, New Jersey, (2005). 10.1002/047174607XSuche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants