Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
-
Ruixia Niu
Abstract
Series of bi-component nonylphenol alkyl sulfonate surfactants (C12/Cn-NPAS, n = 8, 10, 14, 16) were synthesized through sulfonation-alkylation-neutralization using a mixture of linear alpha olefin (C12-olefin and Cn-olefin, n = 8, 10, 14, 16), SO3 and nonylphenol as raw materials. The effect of the raw materials composition on the properties, such as surface tension, interfacial tension, wettability, foam properties of the prepared C12/Cn-NPAS (n = 8, 10, 14, 16) surfactants was systematically investigated. The critical micelle concentrations (CMC) of C12/C8-NPAS, C12/C10-NPAS, C12/C14-NPAS and C12/C16-NPAS are 0.42, 0.26, 0.22 and 0.40 mmol · L−1, and surface tensions at CMC (γCMC) are 34.7, 27.9, 31.8 and 33.3 mN · m−1, respectively. Compared with SDBS and HABS, the surface properties of the prepared C12/Cn-NPAS are superior to traditional surfactants. Interfacial tension between Daqing crude oil and weakly alkaline ASP oil flooding system containing 0.1 wt% of C12/C14-NPAS could reach an ultralow level of 9.78 × 10−3 mN · m−1, which is lower than that for C12-NPAS and HABS. C12/C10-NPAS shows better wetting performance and foamability and foam stability than other synthesized surfactants.
Kurzfassung
Eine Reihe von Zweikomponenten-Nonylphenolalkylsulfonat-Tensiden (C12/Cn-NPAS, n = 8, 10, 14, 16) wurde durch eine Sulfonierungsreaktion mit anschließender Alkylierung und Neutralisation unter Verwendung eines Gemischs aus linearem alpha-Olefin (C12-Olefin und Cn-Olefin, n = 8, 10, 14, 16), SO3 und Nonylphenol hergestellt. Der Einfluss der Ausgangsmaterialzusammensetzung auf Eigenschaften wie die Ober- und Grenzflächenspannung, die Benetzbarkeit, das Schäumvermögen der hergestellten C12/Cn-NPAS-Tenside (n = 8, 10, 14, 16) wurde systematisch untersucht. Die kritische Mizellenbildungskonzentrationen (CMC) von C12/C8-NPAS, C12/C10-NPAS, C12/C14-NPAS und C12/C16-NPAS betragen: 0,42, 0,26, 0,22 und 0,40 mmol L−1 und Oberflächenspannungen bei der CMC (γCMC) sind 34,7, 27,9, 31,8 bzw. 33,3 mN · m−1. Die Oberflächeneigenschaften der synthetisierten C12/Cn-NPAS-Tenside sind denen herkömmlicher Tenside (im Vergleich zu SDBS und HABS) überlegen. Die Grenzflächenspannung zwischen dem Daqing-Rohöl und dem Alkali-Tensid-Polymerflutungssystem, das 0,1 Gew.-% C12/C14-NPAS enthielt, betrug 9,78 × 10−3 mN · m−1 und liegt damit unterhalb der Grenzflächenspannung von C12-NPAS und HABS. Das Tensid C12/C10-NPAS zeigt eine bessere Benetzung sowie ein besseres Schäumvermögen und eine höhere Schaumstabilität als die anderen synthetisierten Tenside.
References
1. Liu B. X. , HouJ. R. and TangH. J. et al.: Experimental study of the effect of strong alkali on lowering the interfacial tension of oil/heavy alkylbenzene sulfonates system, Chinese J. Chem.29 (2011) 2315–2319. 10.1002/cjoc.201180397Suche in Google Scholar
2. Li N. , ZhangG. C. and GeJ. J., et al.: Ultra-low interfacial tension between heavy oil and betaine-type amphoteric surfactants, J. Disper. Sci. Technol.33 (2012) 258–264. 10.1080/01932691.2011.561177Suche in Google Scholar
3. Guo J. X. , LiuQ., LiM. Y., et al.: The effect of alkali on crude oil/water interfacial properties and the stability of crude oil emulsions, Colloids Surf. A-Physicochem. Eng. Asp.273 (2006) 213–218. 10.1016/j.colsurfa.2005.10.015Suche in Google Scholar
4. Zhang R. Q. , LiangC. H. and WuD. et al.: Characterization and demulsification of produced liquid from weak base ASP flooding, Colloids Surf. A: Physicochem. Eng. Asp.290 (2006), 164–171. 2006.05.023. 10.1016/j.colsurfaSuche in Google Scholar
5. Berger P. D. and LeeC. H.: New anionic alkylaryl surfactants based on olefin sulfonic acids, J. Surfactants Deterg.5 (2002) 39–43. 10.1007/s11743-002-0203-3Suche in Google Scholar
6. Berger P. D. , BergerC. H. and HerronS. J.: Chemistry of Olefin Acids. 1. Alkylation of Aromatic Sulfonic Acid, in Proceedings of the 5th World Surfactants Congress, Federchimica, Milan 1 (2001) 291.Suche in Google Scholar
7. Berger P. D. : Anionic surfactants based on alkene sulfonic acid, U.S. Patent 6043391, 2000.Suche in Google Scholar
8. Liu C. D. : Combination of alkyl aryl alkyl sulfonate surfactant and its application in enhanced oil recovery, China Patent 1566258A, 2005.Suche in Google Scholar
9. Tang J. Q. : Study of synthesis and properties of a novel naphthalene replaced-α-olefin sulfonate as anionic surfactant for EOR. Master's Thesis, College of Chemical Engineering, Jiangnan University, Wuxi Jiangsu, China, 2009. 10.7666/d.y1583795Suche in Google Scholar
10. ISO 2271:1989, Surface active agents-detergents-Determination of anionic-active matter by manual or mechanical direct two-phase titration procedure, ISO. 1989.Suche in Google Scholar
11. Wang L. , ZhangL. and ChuY. P. et al.: Surface Properties of sodium branched-alkylbenzenesulfonates, Acta Phys. -Chim. Sin.20 (2004) 1451–1454. 10.3866/PKU.WHXB20041210Suche in Google Scholar
12. Wang Q. , ZhangS. X. and GengB. et al.: Synthesis and surface activities of novel monofluoroalkyl phosphate surfactants, J. Surfactants Deterg.15 (2012) 83–88. 10.1007/s11743-011-1284-1Suche in Google Scholar
13. Zhao G. X. and ZhuB. Y.: Principle of surfactants, China Light Industry Press, Beijing (2003).Suche in Google Scholar
14. Xu H. J. , LvC. X. and LiangJ. L.: Surfactivity and micellization of disodium hexadecyl diphenyl ether disulfonate in aqueous solution, Acta Phys.-Chim. Sin.21 (2005) 1240–1243. 10.3866/PKU.WHXB20051109Suche in Google Scholar
15. Ding W. , RenY. N. and SuY. B. et al.: Study on oil/water interfacial tension of pentadecyl m-xylene sodium sulfonates, J. Southwest Petro. University (Sci. Technol. Ed.).32 (2010) 137–140. 10.3863j.issn.1674-5086.2010.05.026Suche in Google Scholar
16. Ayirala S. C. , VijapurapuC. S. and RaoD. N.: Beneficial effects of wettability altering surfactants in oil-wet fractured reservoirs. J. Petrol. Sci. Eng.52 (2006) 261–274. 10.1016/j.petrol.2006.03.019Suche in Google Scholar
17. Ma X. M. , ChengX. S. and ZhangS. Z. et al.: Investigation on the properties of Gemini surfactants N,N′-diacyl-ethylenediamine-sodium diethylsulfonate. J. Qingdao University (Eng. Technol. Ed.)23 (2008) 63–68.Suche in Google Scholar
18. Hou J. , LiuX. C. and NiuJ. P.: Synthesis and surface properties of disodium monoalkyl diphenyl oxide disulfonate, J. Surfactants Deterg.18 (2015) 523–528. 10.1007/s11743-015-1681-ySuche in Google Scholar
19. Niu R. X. , WangC. and SongH. et al.: Synthesis and Characterization of novel aryl alkyl sulfonates based on nonylphenol, J. Surfactants Deterg.19 (2016) 523–528. 10.1007/s11743-016-1803-1Suche in Google Scholar
20. Mandavi R. : Kinetic studies of some esters and amides in presence of micelles. Doctor of Philosophy Thesis Chemistry Pt. Ravishankar Shukla University, Raipur (CG), India.Suche in Google Scholar
21. Zhou X. Y. , ZhengG. and HanH.: Relationship between structure and properties of long chain Gemini phosphate surfactant, J. Tianjin Polytechnic University.4 (2009) 49–52. 2009.04.013. 10.3969/j.issn.1671-024XSuche in Google Scholar
22. Han H. : Synthesis and properties of long chain Gemini phosphate surfactant. Master's Thesis, Tianjin Polytechnic University, Tianjin, China, 2008. 10.7666/d.y1389357Suche in Google Scholar
23. Zhao Y. , DongY. H. and BiC. F.: Study on Dynamic Interfacial Tension of a Series of Alkylbenzene Sulfonates with Alkane, Acta Chimica Sinica.66 (2008) 799–802. 10.3321/j.issn:0567-7351.2008.07.017Suche in Google Scholar
24. Zhao Y. : Study on Synthesis and interfacial properties of pure compounds of the series of alkylbenzene sulfonates. Ph.D. Thesis, School of chemical engineering, Dalian university of technology, 2006. 10.7666/d.y865990Suche in Google Scholar
25. Cui Z. G. , ZouW. H. and ZhangT. L. et al.: Synthesis of heavy alkylbenzene sulfonates and their application in enhanced oil recovery, Journal of East China University of Science and Technology.42 (1999) 204–209.Suche in Google Scholar
26. Cash L. , CayiasJ. L. and FournierG. et al.: Application of low interfacial tension scaling rules to binary hydrocarbon mixtures, J. Colloid Interf. Sci.59 (1977) 39–44. 10.1016/0021-9797(77)90336-8Suche in Google Scholar
27. Wang P. : Master's Thesis, Identification of heavy alkylbenzene and properties characterization of the derived sulfonate. China Research Institute of Daily Chemical Industry, Shanxi, China, 2005.Suche in Google Scholar
28. Zhang D. L. , WangC. H. and WangG. Y.: Synthesis and properties of a new tetrasiloxane-tailed dicephalic surfactant, Tenside Surfact. Det.49 (2012) 151–155. 10.3139/113.110177Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants