Startseite Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reaction Principle of Alcohol Ether Sulfonates by Sulfonated Alkylation Method – A Review

  • Gang Wang , Ming Zhou , Shenying Ding , Zhou Huang , Ze Zhang und Sisi Li
Veröffentlicht/Copyright: 6. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As a new type of high effective surfactant, aliphatic alcohol ether sulfonate has widely application prospects in the process of tertiary oil recovery. So, the theoretical analysis of synthesis of aliphatic alcohol ether sulfonate has played a very important role in the process of its development. After the first patent about the preparation of a fatty alcohol ether sulfonate surfactant was reported in 1938, there were several methods to synthesize alcohol ether sulfonate surfactants with different structure. Sulfonated alkylation, one of the synthesis methods, is introduced in this paper. The synthesis principle of alcohol ether sodium sulfonate was analyzed by three step reactions – synthesis of PTGE, ring opening reaction and sulfonation reaction. Synthesis principle of PTGE includes acid catalysis, phase-transfer catalysis, side reaction of the synthesis of glycerol ether and reaction of PTGE outcome. Ring opening reaction includes two reactions of acid catalysis and alkali catalysis.

Kurzfassung

Aliphatische Alkoholethersulfonate finden als neue Klasse hocheffektiver Tenside viele Anwendungsperspektiven in der tertiären Erdölförderung. Daher spielt die theoretische Analyse der Synthese von aliphatischen Alkoholethersulfonaten eine sehr wichtige Rolle in dem Entwicklungsprozess. Nachdem im Jahr 1938 das erste Patent über die Herstellung von Fettalkoholethersulfonaten gemeldet wurde, gab es verschiedene Methoden für die Synthese von Alkoholethersulfonaten mit unterschiedlichen Strukturen. Eine der Synthesemethoden, die sulfonierte Alkylierung, wird in diesem Beitrag vorgestellt. Der Synthesevorgang wurde analysiert als eine Reaktion mit drei Stufen: Synthese von PTGE, Ringöffnungsreaktion und Sulfonierungsreaktion. Die Synthese von PTGE enthält die saure Katalyse, die Phasentransferkatalyse, die Seitenreaktion der Synthese des Glycerolethers und die Reaktion zum PTGE. Die Ringöffnungsreaktion besteht aus einer säurekatalysierten und einer alkalikatalysierten Reaktion.


*Correspondence address, Dr. M. Zhou, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China, E-Mail:

Gang Wang studied at the School of Materials Science and Engineering at Southwest Petroleum University as a postgraduate. He is majoring materials physical chemistry.

Ming Zhou received his B.Sc., M.Sc. and Ph.D. from the Southwest Petroleum University in Chengdu of the PR China and worked at the School of Materials Science and Engineering at Southwest Petroleum University as a research chemist in 2002, he is an associate professor at the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation. His research field is the synthesis and applications of surfactants and polymers.

Shenying Ding studied at the School of Materials Science and Engineering at Southwest Petroleum University as a postgraduate. She is majoring materials physical chemistry.

Zhou Huang studied at the School of Materials Science and Engineering at Southwest Petroleum University as a postgraduate. He is majoring materials physical chemistry.

Ze Zhang studied at the School of Materials Science and Engineering at Southwest Petroleum University as a postgraduate. He is majoring materials physical chemistry.

Sisi Li studied at the School of Materials Science and Engineering at Southwest Petroleum University as a postgraduate. She is majoring materials physical chemistry.


References

1. Zhang, Y. M., Niu, J. P. and Li, Q. X.: Synthesis and properties evaluation of sodium fatty alcohol polyoxyethylene ether sulfonate. Tenside Surfactants Detergents47 (2010) 3439. 10.3139/113.110051Suche in Google Scholar

2. Zhao, J. Z., Zhou, M., Wang, X. and Yang, Y.: Synthesis and surface active properties of dimeric Gemini sulfonate surfactants. Tenside Surfactants Detergents51 (2014) 2631. 10.3139/113.110282Suche in Google Scholar

3. Blyakhman, E. M.: Formation mechanism for glycidyl ethers of glycols. Zhurnal Organicheskoi Khimii.3 (1967) 14231430.Suche in Google Scholar

4. Yu, H., Wang, L., Huo, J. and Tan, C. L. Q.: Synthesis of glycidyl ether of poly-(bisphenol-A 1,1′-ferrocene dicarboxylate) and its electrochemical behavior. Designed Monomers and Polymers12 (2009) 305313. 10.1163/156855509X448271Suche in Google Scholar

5. Mckenna, J. M., Wu, T. K. and Pruckmayr, G.: Macrocyclic tetrahydrofuran oligomers. Macromolecules.10 (1977) 877879. 10.1021/ma60058a036Suche in Google Scholar

6. Zhao, Q., Jie, S., Liu, B. and He, J.: Anion exchange cycle of catalyst in liquid-liquid phase-transfer catalysis reaction: Novel autocatalysis. Chemical Engineering Journal262 (2015) 756765. 10.1016/j.cej.2014.09.113Suche in Google Scholar

7. Urata, K., Yano, S., Kawamata, A., Takaishi, N. and Inamoto, Y.: A convenient synthesis of long-chain 1-o-alkyl glyceryl ethers. Journal of the American Oil Chemists Society65 (1988) 12991302. 10.1007/BF02542409Suche in Google Scholar

8. Kang, H. C., Lee, B. M., Yoon, J. and Yoon, M.: Improvement of the phase-transfer catalysis method for synthesis of glycidyl ether. Journal of the American Oil Chemists Society78 (2001) 423429. 10.1007/s11746-001-0279-ySuche in Google Scholar

9. Lei, T., Wu, X. X. and Wang, G. Y.: Synthesis of ethylene methoxyethanol glycidyl ether via phase transfer catalytic. Shanxi chemical industry27 (2007) 68.Suche in Google Scholar

10. Laschewsky, A., Wattebled, L., Arotçaréna, M., Habibjiwan, J. L. and Rakotoaly, R. H.: synthesis and properties of cationic oligomeric surfactants. Langmuir.21 (2005) 71707179. 10.1021/la050952oSuche in Google Scholar PubMed

11. Jin, F. L., Li, X. and Park, S. J.: Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry29 (2015) 111. 10.1016/j.jiec.2015.03.026Suche in Google Scholar

12. Kas'Yan, L. I., Okovityi, S. I. and Kas'Yan, A. O.: Reactions of Alicyclic Epoxy Compounds with Nitrogen-Containing Nucleophiles. Russian Journal of Organic Chemistry40 (2004) 134. 10.1023/B:RUJO.0000034906.46654.ffSuche in Google Scholar

13. Lin, L. H., Wang, C. C., Chen, K. M. and Lin, P. C.: Synthesis and physicochemical properties of silicon-based Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects436 (2013) 881889. 10.1016/j.colsurfa.2013.08.036Suche in Google Scholar

14. Zhou, M., Xia, L., He, Y., Zhang, L., Qiao, X. and Zhong, X.: Synthesis of new Salt-Resistant sulfonate Gemini surfactants with hydroxyl groups. Journal of Surfactants and Detergents18 (2015) 303308. 10.1007/s11743-014-1667-1Suche in Google Scholar

15. Wang, X., Yan, F., Li, Z., Zhang, L., Zhao, S., An, J. and Yu, J.: Synthesis and surface properties of several nonionic-anionic surfactants with straight chain alkyl-benzyl hydrophobic group. Colloids and Surfaces A302 (2007) 532539. 10.1016/j.colsurfa.2007.03.026Suche in Google Scholar

16. Zhou, M., Zhao, J., Wang, X., Jing, J. and Zhou, L.: Synthesis and characterization of novel surfactants 1,2,3-tri(2-oxypropylsulfonate-3-alkylether-propoxy) propanes. Journal of Surfactants and Detergents16 (2013) 665672. 10.1007/s11743-013-1442-8Suche in Google Scholar

17. Zhou, M., Zhao, J., Wang, X. and Yang, Y.: Research on surfactant flooding in high-temperature and high-salinity reservoir for enhanced oil recovery. Tenside Surfactants Detergents. 50 (2013) 175181. 10.3139/113.110245Suche in Google Scholar

18. Guo, X., Meng, X., Du, Z., Zhou, M., Xing, T. and Wang, C.: Studies on foam flooding for high salinity reservoirs after polymer flooding. Oil Gas European Magazine, 41 (2015) 103109. 10.1016/j.petrol.2015.09.020Suche in Google Scholar

19. Guo, J., Xiao, S., Yang, Z., Cao, J., Wang, L. and Yin, Y.: Synthesis of temperature-resistant and salttolerant surfactant SDB-7 and its performance evaluation for Tahe Oilfield flooding (China). Petroleum Science11 (2014) 584589. 10.1007/s12182-014-0375-9Suche in Google Scholar

20. Iglauer, S., Wu, Y., Shuler, P., Tang, Y. and Iii, W. A. G.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. Journal of Petroleum Science & Engineering71 (2010) 2329. 10.1016/j.petrol.2009.12.009Suche in Google Scholar

Received: 2016-04-06
Accepted: 2016-06-14
Published Online: 2017-01-06
Published in Print: 2017-01-20

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110472/html
Button zum nach oben scrollen