Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group
-
Tokuzo Kawase
Abstract
Novel CO2H type gemini surfactants having semifluoroalkyl group (Rf-(CH2)n-: Rf = C4F9, C6F13, C8F17 and n = 2, 3) as hydrophobic group were successfully synthesized and their surface properties were studied. (Perfluoroalkyl)ethylmalonic esters were synthesized by the reaction of malonic ester with Rf(CH2)2I using NaH as base in THF/DMF. (Perfluoroalkyl)propylmalonic esters were synthesized from allylmalonic ester, namely by the radical addition of Rf-I using AIBN as initiator, and reduction with Zn/AcOH. Those fluoroalkylated malonic esters were connected using Br(CH2)sBr (s = 3, 4) to give dimeric tetraesters. Then, tetraesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford CO2H type gemini surfactants. To study their surface properties, both surface tension-concentration and surface pressure-area isotherms were measured. As expected, COOH geminis showed one order of magnitude lower critical micellar concentrations (CMC) than that of conventional 1+1 type surfactant. In the surface pressure-area measurements, as length of fluoroalkyl increased, lift-off area (AL) decreased, monolayers were clearly formed upon compression and the limited areas (A∞) for C6F13 and C8F17 were smaller than twice of that of C8F17(CH2)2COOH. Especially, COOH geminis having Rf = C8F17 and -(CH2)3- spacer showed the formation of solid phase monolayers, and the planar five membered ring-like structure was proposed.
Kurzfassung
Neuartige CO2H-Geminitenside mit einer Semifluoralkylgruppe (Rf-(CH2)n-: Rf = C4F9, C6F13, C8F17 und n = 2, 3) als hydrophobe Gruppe wurden erfolgreich synthetisiert und ihre Oberflächeneigenschaften wurden untersucht. Perfluoralkylethylmalonsäureester erhielt man durch die Reaktion von Malonsäureester mit Rf(CH2)2I in THF/DMF, wobei NaH als Base benutzte. Die Perfluoralkylpropylmalonsäureester wurden aus Allylmalonsäureester synthetisiert, und zwar über die radikalische Addition von Rf-I mittels AIBN als Initiator und die Reduktion mit Zn/AcOH. Diese Fluoralkylmalonsäureester wurden mittels Br(CH2)sBr (s = 3, 4) zu dimeren Tetraester verbunden. Die Tetraester wurden dann mit KOH/EtOH hydrolysiert, worauf eine Decarboxilierung in AcOH erfolgte, um die CO2H-Geminitenside zu erhalten. Für die Untersuchung ihrer Oberflächeneigenschaften wurden die Oberflächenspannungs-Konzentrationsisotherme und die Oberflächendruck-Flächenisotherme gemessen. Wie erwartet haben die CO2H-Geminitenside eine kritische Mizellbildungskonzentration (CMC), die um eine Größenordnung kleiner ist als die der konventionellen 1+1-Tenside. Die Messungen des Oberflächendrucks in Abhängigkeit von der Fläche zeigten, dass bei zunehmender Länge der Fluoralkylkette die “lift-off”-Fläche (AL) abnimmt, bei Kompression werden deutlich Monoschichten gebildet und die Grenzflächen (A∞) von C6F13 und C8F17 werden um das Zweifache kleiner als die von C8F17(CH2)2COOH. Speziell die CO2H-Geminitenside mit einem Rf = C8F17 und einem -(CH2)3-Spacer zeigten die Bildung einer fest Monoschicht. Eine ebene, fünfgliedrige, ringähnliche Struktur wurde daher vorgeschlagen.
References
1. Kissa, E.: Fluorinated Surfactants and Repellents, 2nd Edition, Revised and Expanded, Surfactant Science Series, 97, Marcel Dekker Inc.New York (2001).Suche in Google Scholar
2. Kissa, E.: Fluorinated Surfactants and Repellents, 2nd Edition, Revised and Expanded, Surfactant Science Series, 97, pp. 124–127, Marcel Dekker Inc.New York (2001).Suche in Google Scholar
3. Scholberg, H. M., Guenthner, R. A. and Coon, R. I.: J. Phys. Chem.57 (1953) 923.10.1021/j150510a015Suche in Google Scholar
4. Bernett, M. K. and Zisman, W. A.: J. Phys. Chem.63 (1959) 1911.10.1021/j150581a028Suche in Google Scholar
5. Schuierer, E.: Tenside13 (1976) 1.Suche in Google Scholar
6. Fielding, H. C.: Organofluorine Chemicals and Their Industrial Applications, Banks, R. E. ed., Society of Chemical Industry, London/EllisHorwood, Chichester (1979) 214.Suche in Google Scholar
7. Shafrin, E. G. and Zismal, W. A.: J. Phys. Chem.66 (1962) 740.10.1021/j100810a039Suche in Google Scholar
8. Bernett, M. K. and Zisman, W. A.: J. Phys. Chem.71 (1967) 2075.10.1021/j100866a016Suche in Google Scholar
9. Greiner, A., Krüger, B. and Herbst, M.: Z. Chem.18 (1978) 383.10.1002/zfch.19780181023Suche in Google Scholar
10. Olsen, G. W., Burlew, M. M, Burris, J. M. and Mandel, J. H.: Fluorochemical Medical Surveillance Program. 3M Final Report. October 11, (2001).Suche in Google Scholar
11. Hori, H., Nagaoka, Y., Murayama, M. and Kutsuna, S.: Environ. Sci. Technol.2 (2008) 7438.10.1021/es800832pSuche in Google Scholar
12. Zana, R.: Adv. Colloid Interface Sci.97 (2002) 203.10.1016/S0001-8686(01)00069-0Suche in Google Scholar
13. Matsuoka, K., Yoshimura, T., Bong, M., Honda, C. and Endo, K.: Langmuir24 (2008) 5676.10.1021/la800618vSuche in Google Scholar PubMed
14. Trabelsi, H. and Cambon, A.: FR Patent Appl. 2765217, 97/7, 901 (1998).Suche in Google Scholar
15. KawaseT., IidzukaJ. and OidaT.: J. Oleo Sci.59 (2010) 483.10.5650/jos.59.483Suche in Google Scholar PubMed
16. Oda, R., Huc, I., Danino, D. and Talmon, Y.: Langmuir16 (2000) 9759.10.1021/la0008075Suche in Google Scholar
17. Yoshimura, T., Ohno, A. and Esumi, K.: Langmuir22 (2006) 4643.10.1021/la0534266Suche in Google Scholar
18. MatsuokaK., YoshimuraT., ShikimotoT. and HamadaJ.: Langmuir23 (2007) 10990.10.1021/la701525cSuche in Google Scholar
19. Brace, N. O.: U. S. Patent 3145222 (1964).Suche in Google Scholar
20. Brace, N. O.: J. Org. Chem.40 (1975) 851.10.1021/jo00895a007Suche in Google Scholar
21. Dam, T., Engberts, J. B. F. N., Karthauser, J., Karaborni, S. and van Os, N. M.: Colloids Surfaces A118 (1996) 41.10.1016/0927-7757(95)03383-1Suche in Google Scholar
22. Koelsch, C. F. and Sjolander, J. R.: J. Org. Chem.25 (1960) 1479.10.1021/jo01079a004Suche in Google Scholar
23. Abele, E., Abele, R. and Lukevics, E.: Latvijas Kimijas Zurnals1999, 64.Suche in Google Scholar
24. Cho, L. Y. and Romero, J. R.: Tetrahedron Lett.36 (1995) 8757.10.1016/0040-4039(95)01921-4Suche in Google Scholar
25. White, D. A.: Organic Syntheses, Coll. Vol. 7 (1990) 482.Suche in Google Scholar
26. Quermann, R., Maletz, R. and Schafer, H. J.: Liebigs Ann. Chem.1993, 1219.10.1002/jlac.1993199301197Suche in Google Scholar
27. Newkome, G. R., Baker, G. R., Arai, S., Saunders, M. J., Russo, P. S., Theriot, K. J., Moorefield, C. N., Rogers, L. E. and Mille, J. E.: J. Am. Chem. Soc.112 (1990) 8458.10.1021/ja00179a034Suche in Google Scholar
28. Brunner, H., Müller, J. and Spitzer, J.: Monatshefte fur Chemie127 (1996) 845.10.1007/BF00807023Suche in Google Scholar
29. Aisaka, T., Oida, T. and Kawase, T.: J. Oleo Sci.56 (2007) 633.10.5650/jos.56.633Suche in Google Scholar PubMed
30. Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd Edition, John Wiley and SonsNew York (2004).10.1002/0471670561Suche in Google Scholar
31. Mukerjee, P. and Yang, A. Y. S.: J. Phys. Chem.80 (1976) 1388.10.1021/j100553a028Suche in Google Scholar
32. Nomura, Y., Oida, T. and Kawase, T.: unpublished.Suche in Google Scholar
© 2012, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Abstracts
- Abstracts
- Application
- An Advanced Method for the Preparation of Erucyl Dimethyl Amidopropyl Betaine and Acid Solution Properties
- Development and Validation of Micellar-Enhanced Spectrofluorimetric Method for Determination of Sulpiride in Pharmaceutical Formulations and Biological Samples
- Influence of Heat Treatment on the Performance of Polymers as Gypsum (CaSO4 · 2H2O) Scale Inhibitors for Industrial Water Applications
- Environmental Chemistry
- Adsorption Kinetics of Cu(II) from Aqueous Solution by Low Cost Chemically Modified Saw Dust of Morus alba
- Immobilized Micro-Organism in Mesoporous Activated Carbon for Treatment of Tannery Waste Water
- Physical Chemistry
- Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants
- Mixed Micelles Containing Sodium Laurate: Effect of Chain Length, Polar Head Group, and Added Salt
- Synthesis
- Investigating of Synthesis Parameters, Kinetics and Pilot Plant of Sodium Sarcosinate
- Synthesis and Surface Properties of CO2H Type Gemini Surfactant Having Semifluoroalkyl Group as Hydrophobic Group