Startseite Residual Stresses in Shot Peened Grey and Compact Iron*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Residual Stresses in Shot Peened Grey and Compact Iron*

  • M. Lundberg , R. L. Peng , M. Ahmad , T. Vuoristo , D. Bäckström und S. Johansson
Veröffentlicht/Copyright: 3. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Grey cast iron and compacted graphite iron with a pearlitic matrix are investigated in this study after shot peening using twelve unique combinations of parameters, namely shot size, peening intensity and coverage, followed by residual stress measurements and evaluations. Cylindrical test samples were cut out from heavy truck cylinder heads and polished on the top flat surface to decrease effects from cutting. Residual stresses and the affected depth from the different peening conditions varied between −245 MPa to −565 MPa and from 280 μm to 770 μm in depth. Resultant surface compressive stresses decrease with increasing shot size, peening intensity or coverage whereas the affected depth increases with increasing intensity. The increased affected depth is a result from the increased extent and magnitude of plastic deformation. The compacted graphite iron was more affected by shot peening than the grey cast iron, meaning that the same shot peening parameters resulted in both higher compressive stresses and larger deformation depth.

Kurzfassung

In dieser Arbeit werden die Eigenschaften von Grauguss und Vermiculargraphitguss mit einer perlitischen Matrix nach zwölf unterschiedlichen Kugelstrahlbehandlungen untersucht. Hierfür wurden Parametervariationen von Kugelgröße, Strahlintensität und Deckungsgrad eingestellt. Anschließend wurden Eigenspannungen gemessen und ausgewertet. Die zylindrischen Testkörper wurden aus Zylinderköpfen von Schwerlastern entnommen und an der Stirnseite poliert, um den Einfluss des Schneideprozesses zu reduzieren. Ausmaß und Einwirkungstiefe der eingebrachten Eigenspannungen reichen von −245 MPa bis −565 MPa bzw. von 280 μm bis 770 μm. Die oberflächlichen Druckeigenspannungen sinken mit größerer Strahlkugelgröße, Strahlintensität oder größerem Deckungsgrad, während sich die Einwirkungstiefe mit steigender Strahlintensität erhöht. Dies rührt von der erhöhten plastischen Verformung her. Dabei ist der Einfluss auf den Vermiculargraphitguss größer als auf den Grauguss, d. h. bei derselben Kugelstrahlbehandlung erzielt man größere Druckeigenspannnungen und eine höhere Einwirkungstiefe.


4
*

Enhanced contribution based upon a presentation at the International Conference on Residual Stresses ICRS9, October 7–9, 2012, in Garmisch-Partenkirchen, Germany


References

1. Wagner, L.: Shot Peening. Wiley-VCH, Weinheim, 2003, 10.1002/3527606580Suche in Google Scholar

2. Farrahi, G. H.; Lebrun, J. L.; Couratin, D.: Effect of shot peening on residual stress and fatigue life of a spring steel. Fatigue and Fracture of Engineering Materials and Structures18 (1995), pp. 211220, 10.1111/j.1460-2695.1995.tb00156.xSuche in Google Scholar

3. Fathallah, R.; Cao, W.; Castex, L.; Webster, P. S.: Effects of shot peening parameters on introduced residual stresses. Proc. 4th Int. Conf. on Residual Stresses, ICRS4, 8–10.06.94, Baltimore, Maryland/USA, 1994, pp. 340346,Suche in Google Scholar

4. Olmi, G.; Comandini, M.; Freddi, A.: Fatigue on Shot-Peened Gears: Experimentation, Simulation and Sensitivity Analyses. Strain46 (2010), pp. 382395, 10.1111/j.1475-1305.2009.00685.xSuche in Google Scholar

5. Zhan, K.; Jiang, C.; Wu, X.; Ji, V.: Surface Layer Characteristics of S30432 Austenite Stainless Steel after Shot Peening. Mater. Trans.53 (2012), pp. 10021006, 10.2320/matertrans.m2011390Suche in Google Scholar

6. Zammit, A.; Mhaede, M.; Grech, M.; Abela, S.; Wagner, L.: Influence of shot peening on the fatigue life of Cu-Ni austempered ductile iron. Mat. Sci. Eng. A545 (2012), pp. 7885, 10.1016/j.msea.2012.02.092Suche in Google Scholar

7. Wang, S.; Li, Y.; Yao, M.; Wang, R.: Compressive residual stress introduced by shot peening. J. Mater. Process. Technol.73 (1998), pp. 6473, 10.1016./s0924-0136(97)00213-6Suche in Google Scholar

8. Simonin, S. P.; Flavenot, J. F.: Shot Peening of Nodular Cast Iron. (Retroactive Coverage), Shot Peening: Science, Technology; Application, Garmisch-Partenkirchen; FRG; 1987, pp. 133140, 10.1007/978-94-009-1143-7_147Suche in Google Scholar

9. Bagherifard, S.; Ghelichi, R.; Guagliano, M.: On the shot peening surface coverage and its assessment by means of finite element simulation: A critical review and some original developments. Applied Surface Science259 (2012), pp. 186194, 10.1016/j.apsusc.2012.07.017Suche in Google Scholar

10. Pfeiffer, W.; Wenzel, J.: Shot peening of brittle materials – status and outlook. Mater. Sci. Forums638 – 642 (2010), pp. 799804, 10.4028/www.scientific.net/msf.638-642.799Suche in Google Scholar

11. Kubiak, K.; Fouvry, S.; Marechal, A. M.: A practical methodology to select fretting palliatives: Application to shot peening, hard chromium and WC-Co coatings. Wear259 (2005), pp. 367376, 10.1016/j.wear.2005.01.030Suche in Google Scholar

12. Bagherifard, S.; Fernandez-Pariente, I.; Ghelichi, R.; Guagliano, M.: Fatigue behaviour of notched steel specimens with nanocrystallized surface obtained by severe shot peening. Materials and Design45 (2013), pp. 497503, 10.1016/j.matdes.2012.09.025Suche in Google Scholar

13. Takahashi, K.; Nishio, Y.; Kimura, Y.; Andoa, K.: Improvement of strength and reliability of ceramics by shot peening and crack healing. J. Europ. Ceramic Soc.30 (2010), pp. 30473052, 10.1016/j.jeurceramsoc.2010.07.030Suche in Google Scholar

14. Zhang, J. W.; Lu, L. T.; Shiozawa, K.; Shen, X. L.; Yi, H. F.; Zhang, W. H.: Analysis on fatigue property of microshot peened railway axle steel. Mat. Sci. Eng. A528 (2011), pp. 16151622, 10.1016/j.msea.2010.10.086Suche in Google Scholar

15. Harada, Y.; Fukauara, K.; Kohamada, S.: Effects of microshot peening on surface characteristics of high-speed tool steel. J. Mater. Process. Technol.201 (2008), pp. 319324, 10.1016/j.jmatprotec.2007.11.247Suche in Google Scholar

16. Ochi, Y.; Masaki, K.; Matsumura, T.; Sekino, T.: Effect of shot-peening treatment on high cycle fatigue property of ductile cast iron. Int. J. Fatigue.23 (2001), pp. 441448, 10.1016/s0142-1123(00)00110-9Suche in Google Scholar

17. Ji, S.; Roberts, K.; Fan, Z.: Effect of shot peening on fatigue performance of ductile iron castings. Mat. Sci. Technol.18 (2002), pp. 193197, 10.1179/026708301225000572Suche in Google Scholar

18. Kirk, D.; Birch, D. G.: Residual stresses induced by peening austenitic ductile cast-iron. Proc. 7th Int. Conf. on Shot Peening, ICSP7, 29.09.-01.10.99, Warsaw, Poland, 1999, pp. 2332Suche in Google Scholar

19. Lawerenz, M.: Shot Peening Ductile Iron. Modern Casting80 (1990), pp. 5153Suche in Google Scholar

20. Mroz, S. S.; Goodrich, G. M.: Quantification of Shot Blast Cleaning Effects on Cast Iron as Cast Surfaces. Trans. Amer. Foundry Soc.114 (2006), pp. 493506Suche in Google Scholar

21. Lundberg, M.; Peng, R. L.; Ahmad, M.; Vuoristo, T.; Bäckström, D.; Johansson, S.: Influence of shot peening parameters on residual stresses in flake and vermicular cast irons. Mater. Sci. Forum768 – 769 (2013), pp. 534541, 10.4028/www.scientific.net/msf.768-769.534Suche in Google Scholar

22. Lundberg, M.; Peng, R. L.; Ahmad, M.; Vuoristo, T.; Bäckström, D.; Johansson, S.: Graphite Morphology's Influence on Shot Peening Results in Cast Irons. Mater. Sci. Forum768 – 769 (2013), pp. 542549, 10.4028/www.scientific.net/msf.768-769.542Suche in Google Scholar

23. Noyan, I. C.; Cohen, J. B.: Residual Stress Measurement by Diffraction and Interpretation. Springer, New York, 198710.1007/978-1-4613-9570-6Suche in Google Scholar

Published Online: 2014-03-03
Published in Print: 2014-02-27

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/105.110207/html
Button zum nach oben scrollen