Abstract
The main purpose of the present paper was to apply the Laser Doppler Anemometry (LDA) technique to measure turbulent liquid flow in a Kenics static mixer. The LDA set-up was a one-channel backscatter system with argon-ion laser. Measurements in the static mixer were carried out for three values of the Reynolds number: 5000, 10000, and 18000. Water was used as the process liquid. Values of the axial and tangential components of the local, mean, and root mean square velocities were measured inside the static mixer. It was observed that the shape of the velocity profile depends strongly on the Reynolds number, Re, as well as on the axial, h, and radial, α, position of the measurement point. Strong dependence of the velocity fluctuations on the Reynolds number was found in the investigated range of Re and the measurement point position. Furthermore, one-dimensional energy spectra of the velocity fluctuations were also obtained by means of the Fast Fourier Transform. Fluctuation spectra of the axial and tangential velocities provided information about the energy density of velocity fluctuations in the observed range of Reynolds numbers. A study of the energy spectra led to the conclusion that the energy density increases with the increasing radial distance from the mixer walls at constant values of h, Re, and α. Minor variations in the mean value of the energy density, E, were observed together with variations of the measurement point angular position, α. In addition, it was observed that an increase of the Reynolds number causes significant increase of the power spectral density.
[1] Adamiak, I., & Jaworski, Z. (2001). An experimental investigations of non-Newtonian liquid flow in a static Kenics mixer. Chemical and Process Engineering, 22(3B), 175–180. (in Polish) Suche in Google Scholar
[2] Adamiak, I., & Jaworski, Z. (2004). A non-Newtonian fluid turbulent flow in the kenics static mixer. Chemical and Process Engineering, 25, 535–541. (in Polish) Suche in Google Scholar
[3] Albrecht, H. E., Borys, M., Damaschke, N., & Tropea, C. (2003). Laser Doppler and phase Doppler measurement techniques. Berlin, Germany: Springer. http://dx.doi.org/10.1007/978-3-662-05165-810.1007/978-3-662-05165-8Suche in Google Scholar
[4] Baldi, S., & Yianneskis, M. (2004). On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements. Chemical Engineering Science, 59, 2659–2671. DOI: 10.1016/j.ces.2004.03. 021. http://dx.doi.org/10.1016/j.ces.2004.03.021Suche in Google Scholar
[5] Barrué, H., Karoui, A., Le Sauze, N., Costes, J., & Illy, F. (2001). Comparison of aerodynamics and mixing mechanisms of three mixers: Oxynator™ gas-gas mixer, KMA and SMI static mixers. Chemical Engineering Journal, 84, 343–354. DOI: 10.1016/s1385-8947(01)00128-0. http://dx.doi.org/10.1016/S1385-8947(01)00128-010.1016/S1385-8947(01)00128-0Suche in Google Scholar
[6] Baudou, C., Xuereb, C., Costes, J., & Bertrand, J. (2000). Laser Doppler measurements of turbulent parameters in different multiple-propeller systems. Chemical Engineering & Technology, 23, 257–266. DOI: 10.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-4. http://dx.doi.org/10.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-410.1002/(SICI)1521-4125(200003)23:3<257::AID-CEAT257>3.0.CO;2-4Suche in Google Scholar
[7] Bell, W. A. (1986). Spectral analysis of laser velocimeter data with the slotted correlation method. In Proceedings of the AIAA/ASME 4th Fluid Dynamics, Plasma Dynamics and Lasers Conference, May 12–14, 1986 (AIAA paper 86-1102). Atlanta, GA, USA. 10.2514/6.1986-1102Suche in Google Scholar
[8] Benedict, L. H., Nobach, H., & Tropea, C. (2000). Estimation of turbulent velocity spectra from laser Doppler data. Measurement Science and Technology, 11, 1089–1104. DOI: 10.1088/0957-0233/11/8/301. http://dx.doi.org/10.1088/0957-0233/11/8/30110.1088/0957-0233/11/8/301Suche in Google Scholar
[9] Crowe, C., Sommerfeld, M., & Tsuji, Y. (1998). Multiphase flows with droplets and particles. Boca Raton, FL, USA: CRC Press. Suche in Google Scholar
[10] Darelius, A., Rasmuson, A., Niklasson Björn, I., & Folestad, S. (2007). LDA measurements of near wall powder velocities in a high shear mixer. Chemical Engineering Science, 62, 5770–5776. DOI: 10.1016/j.ces.2007.06.015. http://dx.doi.org/10.1016/j.ces.2007.06.01510.1016/j.ces.2007.06.015Suche in Google Scholar
[11] Deshpande, S. S., Sathe, M. J., & Joshi, J. B. (2009). Evaluation of local turbulent energy dissipation rate using PIV in jet loop reactor. Industrial & Engineering Chemistry Research, 48, 5046–5057. DOI: 10.1021/ie8007924. http://dx.doi.org/10.1021/ie800792410.1021/ie8007924Suche in Google Scholar
[12] Forrest, S., Bridgwater, J., Mort, P. R., Litster, J., & Parker, D. J. (2003). Flow patterns in granulating systems. Powder Technology, 130, 91–96. DOI: 10.1016/s0032-5910(02)00232-2. http://dx.doi.org/10.1016/S0032-5910(02)00232-210.1016/S0032-5910(02)00232-2Suche in Google Scholar
[13] Goldstein, R. J. (1996). Fluid mechanics measurements (2nd ed.). Philadelphia, PA, USA: Taylor & Francis. Suche in Google Scholar
[14] Habchi, C, Lemenand, T, Della Valle, D., & Peerhossaini, H. (2010). Turbulent mixing and residence time distribution in novel multifunctional heat exchangers-reactors. Chemical Engineering and Processing, 49, 1066–1075. DOI: 10.1016/j.cep.2010.08.007. http://dx.doi.org/10.1016/j.cep.2010.08.00710.1016/j.cep.2010.08.007Suche in Google Scholar
[15] Hobbs, D. M., & Muzzio, F. J. (1998). Reynolds number effects on laminar mixing in the Kenics static mixer. Chemical Engineering Journal, 70, 93–104. DOI: 10.1016/s0923-0467(98)00065-7. 10.1016/S0923-0467(98)00065-7Suche in Google Scholar
[16] Ibsen, C. H., Solberg, T., Hjertager, B. H., & Johnsson, F. (2002). Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles. Experimental Thermal and Fluid Science, 26, 851–859. DOI: 10.1016/s0894-1777(02)00196-6. http://dx.doi.org/10.1016/S0894-1777(02)00196-610.1016/S0894-1777(02)00196-6Suche in Google Scholar
[17] Jaffer, S. A., & Wood, P. E. (1998). Quantification of laminar mixing in the Kenics static mixer: An experimental study. The Canadian Journal of Chemical Engineering, 76, 516–521. DOI: 10.1002/cjce.5450760323. http://dx.doi.org/10.1002/cjce.545076032310.1002/cjce.5450760323Suche in Google Scholar
[18] James, R. N., Babcock, W. R., & Seifert, H. S. (1968). A laser-Doppler technique for the measurement of particle velocity. AIAA Journal, 6(1), 160–162. http://dx.doi.org/10.2514/3.446110.2514/3.4461Suche in Google Scholar
[19] Kaci, H. M., Lemenand, T., Della Valle, D., & Peerhossaini, H. (2009). Effects of embedded streamwise vorticity on turbulent mixing. Chemical Engineering and Processing: Process Intensification, 48, 1457–1474. DOI: 10.1016/j.cep.2009.08.002. 10.1016/j.cep.2009.08.002Suche in Google Scholar
[20] Karoui, A., LeSauze, N., Costes, J., & Bertrand, J. (1997). Experimental and numerical study of flow at the outlet of Sulzer SMV static mixers. Récents Progr`es en Génie des Procédés, 11(51), 323–330. Suche in Google Scholar
[21] Kroon, P. S., Schuitmaker, A., Jonker, H. J. J., Tummers, M. J., Hensen, A., & Bosveld, F. C. (2010). An evaluation by laser Doppler anemometry of the correction algorithm based on Kaimal co-spectra for high frequency losses of EC flux measurements of CH4 and N2O. Agricultural and Forest Meteorology, 150, 794–805. DOI: 10.1016/j.agrformet.2009.08.009. http://dx.doi.org/10.1016/j.agrformet.2009.08.00910.1016/j.agrformet.2009.08.009Suche in Google Scholar
[22] Kumara, W. A. S., Elseth, G., Halvorsen, B. M., & Melaaen, M. C. (2010). Comparison of Particle Image Velocimetry and Laser Doppler Anemometry measurement methods applied to the oil-water flow in horizontal pipe. Flow Measurement and Instrumentation, 21, 105–117. DOI: 10.1016/j.flowmeasinst.2010.01.005. http://dx.doi.org/10.1016/j.flowmeasinst.2010.01.00510.1016/j.flowmeasinst.2010.01.005Suche in Google Scholar
[23] Laurenzi, F., Coroneo, M., Montante, G., Paglianti, A., & Magelli, F. (2009). Experimental and computational analysis of immiscible liquid-liquid dispersions in stirred vessels. Chemical Engineering Research and Design, 87, 507–514. DOI: 10.1016/j.cherd.2008.12.007. http://dx.doi.org/10.1016/j.cherd.2008.12.00710.1016/j.cherd.2008.12.007Suche in Google Scholar
[24] Leitner, M., Wünsch, O., & Böhme, G. (2003). Dreidimensionale LDV und FEM zur Strömungsanalyse in statischen Mischelementen. Forschung im Ingenieurwesen, 68(1), 39–50. DOI: 10.1007/s10010-003-0109-4. (in German) http://dx.doi.org/10.1007/s10010-003-0109-410.1007/s10010-003-0109-4Suche in Google Scholar
[25] Lu, Y., Glass, D. H., & Easson, W. J. (2009). An investigation of particle behavior in gas-solid horizontal pipe flow by an extended LDA technique. Fuel, 88, 2520–2531. DOI: 10.1016/j.fuel.2009.02.038. http://dx.doi.org/10.1016/j.fuel.2009.02.03810.1016/j.fuel.2009.02.038Suche in Google Scholar
[26] Lui, S. W., Meneveau, C., & Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119. DOI: 10.1017/s0022112094002296. http://dx.doi.org/10.1017/S002211209400229610.1017/S0022112094002296Suche in Google Scholar
[27] Mokrani, A., Castelain, C., & Peerhossaini, H. (2009). Experimental study of the influence of the rows of vortex generators on turbulence structure in a tube. Chemical Engineering and Processing: Process Intensification, 48, 659–671. DOI: 10.1016/j.cep.2008.07.009. http://dx.doi.org/10.1016/j.cep.2008.07.00910.1016/j.cep.2008.07.009Suche in Google Scholar
[28] Paál, G., Angster, J., Garen, W., & Miklós, A. (2006). A combined LDA and flow-visualization study on flue organ pipes. Experiments in Fluids, 40, 825–835. DOI: 10.1007/s00348-006-0114-0. http://dx.doi.org/10.1007/s00348-006-0114-010.1007/s00348-006-0114-0Suche in Google Scholar
[29] Paul, E. L., Atiemo-Obeng, V., & Kresta, S. M. (2003). Handbook of industrial mixing: science and practice. Hoboken, NJ, USA: Wiley. http://dx.doi.org/10.1002/047145145210.1002/0471451452Suche in Google Scholar
[30] Peryt-Stawiarska, S., & Jaworski, Z. (2007). Large eddy simulations of the Newtonian fluid flow through a Kenics static mixer. Chemical and Process Engineering, 28, 435–444. Suche in Google Scholar
[31] Peryt-Stawiarska, S., & Jaworski, Z. (2008). Fluctuations of the non-Newtonian fluid flow in a Kenics static mixer: An experimental study. Polish Journal of Chemical Technology, 10(3), 35–37. DOI: 10.2478/v10026-008-0033-3. http://dx.doi.org/10.2478/v10026-008-0033-310.2478/v10026-008-0033-3Suche in Google Scholar
[32] Pope, S. B. (2000). Turbulent flows. Cambridge, UK: Cambridge University Press. http://dx.doi.org/10.1017/CBO978051184053110.1017/CBO9780511840531Suche in Google Scholar
[33] Song, H. S., & Han, S. P. (2005). A general correlation for pressure drop in a Kenics static mixer. Chemical Engineering Science, 60, 5696–5704. DOI: 10.1016/j.ces.2005.04.084. http://dx.doi.org/10.1016/j.ces.2005.04.08410.1016/j.ces.2005.04.084Suche in Google Scholar
[34] Szalai, E. S., & Muzzio, F. J. (2003). Fundamental approach to the design and optimization of static mixers. AIChE Journal, 49, 2687–2699. DOI: 10.1002/aic.690491103. http://dx.doi.org/10.1002/aic.69049110310.1002/aic.690491103Suche in Google Scholar
[35] Tran, A. L. H., Litster, J. D., Seville, J. P. K., Ingram, A., & Fan, X. F. (2006). Dry and cohesive powders in vertical axis high shear mixers using positron emission particle tracking (PEPT). In Proceedings of the 5th World Congress on Particle Technology, April 23–27, 2006. Orlando, FL, USA: The American Institute of Chemical Engineers. Suche in Google Scholar
[36] Tropea, C., Yarin, A. L., & Foss, J. F. (Eds.) (2007). Springer Handbook of experimental fluid mechanics. Berlin, Germany: Springer. 10.1007/978-3-540-30299-5Suche in Google Scholar
[37] van Wageningen, W. F. C., Mudde, R. F., & van den Akker, H. E. A. (2003). Numerical investigation into mixing of particle-laden flows in a Kenics static mixer. In Proceedings of the 11th European Conference Mixing (pp. 137–144), October 14–17, 2003. Bamberg, Germany. Suche in Google Scholar
[38] van Wageningen, W. F. C., Kandhai, D., Mudde, R. F., & van den Akker, H. E. A. (2004). Dynamic flow in a Kenics static mixer: An assessment of various CFD methods. AIChE Journal, 50, 1684–1696. DOI: 10.1002/aic.10178. http://dx.doi.org/10.1002/aic.1017810.1002/aic.10178Suche in Google Scholar
[39] Wiklund, J. A., Stading, M., Pettersson, A. J., & Rasmuson, A. (2006). A comparative study of UVP and LDA techniques for pulp suspensions in pipe flow. AIChE Journal, 52, 484–495. DOI: 10.1002/aic.10653. http://dx.doi.org/10.1002/aic.1065310.1002/aic.10653Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes
Artikel in diesem Heft
- Evaluation of waste products in the synthesis of surfactants by yeasts
- Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
- Alkali pre-treatment of Sorghum Moench for biogas production
- Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
- Model predictive control-based robust stabilization of a chemical reactor
- Decomposition of meta- and para-phenylphenol during ozonation process
- Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
- Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
- Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
- Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
- Effect of flow-rate on ethanol separation in membrane distillation process
- Preparation of aluminium ammonium calcium phosphates using microwave radiation
- Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
- Preparation of sterically stabilized gold nanoparticles for plasmonic applications
- Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
- Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
- Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
- Selective oxidation of metallic single-walled carbon nanotubes