Startseite Decomposition of meta- and para-phenylphenol during ozonation process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Decomposition of meta- and para-phenylphenol during ozonation process

  • Magdalena Olak-Kucharczyk EMAIL logo , Jacek Miller und Stanisław Ledakowicz
Veröffentlicht/Copyright: 28. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The decomposition of meta-phenylphenol (m-PP) and para-phenylphenol (p-PP) in a heterogeneous gas-liquid system using ozone was investigated. The influence of different reaction parameters such as ozone and PP isomers concentration as well as pH and temperature of the reaction mixture on the PP decay rate was determined. The second-order rate constants for the direct reaction of molecular ozone, determined in a homogeneous system, were (5.85 ± 0.35) × 102 M−1 s−1 and (8.90 ± 0.33) × 102 M−1 s−1 for m-PP and p-PP, respectively. The rate constants for the reaction of m-PP and p-PP with ozone increased with increasing pH. The reaction rate constants with ozone were found to be (1.75 ± 0.02) × 109 M−1 s−1 and (1.86 ± 0.02) × 109 M−1 s−1 for m-PP and p-PP anions, respectively.

[1] Adams, C., Wang, Y., Loftin, K., & Meyer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128, 253–260. DOI: 10.1061/(ASCE)0733-9372(2002)128:3(253). http://dx.doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)10.1061/(ASCE)0733-9372(2002)128:3(253)Suche in Google Scholar

[2] Agüera, A., Fernández-Alba, A. R., Piedra, L., Mézcua, M., & Gómez, M. J. (2003). Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. Analytica Chimica Acta, 480, 193–205. DOI: 10.1016/s0003-2670(03)00040-0. http://dx.doi.org/10.1016/S0003-2670(03)00040-010.1016/S0003-2670(03)00040-0Suche in Google Scholar

[3] Alum, A., Yoon, Y., Westerhoff, P., & Abbaszadegan, M. (2004). Oxidation of bisphenol A, 17β-estradiol, and 17β-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 19, 257–264. DOI: 10.1002/tox.20018. http://dx.doi.org/10.1002/tox.2001810.1002/tox.20018Suche in Google Scholar

[4] Anitescu, G., & Tavlarides, L. L. (2005). Oxidation of biphenyl in supercritical water: Reaction kinetics, key pathways, and main products. Industrial & Engineering Chemistry Research, 44, 1226–1232. DOI: 10.1021/ie049566c. http://dx.doi.org/10.1021/ie049566c10.1021/ie049566cSuche in Google Scholar

[5] Arslan-Alaton, I., & Caglayan, A. E. (2005). Ozonation of Procaine Penicillin G formulation effluent. Part I: Process optimization and kinetics. Chemosphere, 59, 31–39. DOI: 10.1016/j.chemosphere.2004.10.014. 10.1016/j.chemosphere.2004.10.014Suche in Google Scholar

[6] Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15, 449–456. DOI: 10.1016/0043-1354(81)90054-3. http://dx.doi.org/10.1016/0043-1354(81)90054-310.1016/0043-1354(81)90054-3Suche in Google Scholar

[7] Beltrán, F. J., García-Araya, J. F., & Acedo, B. (1994). Advanced oxidation of atrazine in water-I. Ozonation. Water Research, 28, 2153–2164. DOI: 10.1016/0043-1354(94)90027-2. http://dx.doi.org/10.1016/0043-1354(94)90027-210.1016/0043-1354(94)90027-2Suche in Google Scholar

[8] Błędzka, D., Gryglik, D., Olak, M., Gębicki, J. L., & Miller, J. S. (2010). Degradation of n-butylparaben and 4-tertoctylphenol in H2O2/UV system. Radiation Physics and Chemistry, 79, 409–416. DOI: 10.1016/j.radphyschem.2009.11.012. http://dx.doi.org/10.1016/j.radphyschem.2009.11.01210.1016/j.radphyschem.2009.11.012Suche in Google Scholar

[9] Bolz, U., Hagenmaier, H., & Körner, W. (2001). Phenolic xenoestrogens in surface water, sediments, and sewage sludge from Baden-Württemberg, south-west Germany. Environmental Pollution, 115, 291–301. DOI: 10.1016/s0269-7491(01)00100-2. http://dx.doi.org/10.1016/S0269-7491(01)00100-210.1016/S0269-7491(01)00100-2Suche in Google Scholar

[10] Bratkovskaja, I., Vidziunaite, R., & Kulys, J. (2004). Oxidation of phenolic compounds by peroxidase in the presence of soluble polymers. Biochemistry (Moscow), 69, 985–992. DOI: 10.1023/B:BIRY.0000043540.87287.80. http://dx.doi.org/10.1023/B:BIRY.0000043540.87287.8010.1023/B:BIRY.0000043540.87287.80Suche in Google Scholar

[11] Bratkovskaya, I., Ivanec, R., & Kulys, J. (2006). Mediatorassisted laccase-catalyzed oxidation of 4-hydroxybiphenyl. Biochemistry (Moscow), 71, 550–554. DOI: 10.1134/s0006297906050130. http://dx.doi.org/10.1134/S000629790605013010.1134/S0006297906050130Suche in Google Scholar

[12] Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/O·−) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886. DOI: 10.1063/1.555805. http://dx.doi.org/10.1063/1.55580510.1063/1.555805Suche in Google Scholar

[13] Chelme-Ayala, P., Gamal El-Din, M., Smith, D. W., & Adams, C. D. (2011). Oxidation kinetics of two pesticides in natural waters by ozonation and ozone combined with hydrogen peroxide. Water Research, 45, 2517–2526. DOI: 10.1016/j.watres.2011.02.007. http://dx.doi.org/10.1016/j.watres.2011.02.00710.1016/j.watres.2011.02.007Suche in Google Scholar

[14] Coelhan, M., Yu, J. T., & Roberts, A. L. (2009). Presence of the biocide ortho-phenylphenol in canned soft drinks in the United States and Germany. Food Chemistry, 112, 515–519. DOI: 10.1016/j.foodchem.2008.05.107. http://dx.doi.org/10.1016/j.foodchem.2008.05.10710.1016/j.foodchem.2008.05.107Suche in Google Scholar

[15] Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone-Science & Engineering, 21, 239–260. DOI: 10.1080/01919519908547239. http://dx.doi.org/10.1080/0191951990854723910.1080/01919519908547239Suche in Google Scholar

[16] Esplugas, S., Bila, D. M., Krause, L. G. T., & Dezotti, M. (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials, 149, 631–642. DOI: 10.1016/j.jhazmat.2007.07.073. http://dx.doi.org/10.1016/j.jhazmat.2007.07.07310.1016/j.jhazmat.2007.07.073Suche in Google Scholar

[17] Gottschalk, C., Libra, J. A., & Saupe, A. (2010). Ozonation of water and waste water (2nd ed.). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[18] Hoigné, J., & Bader, H. (1976). The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research, 10, 337–386. DOI: 10.1016/0043-1354(76)90055-5. http://dx.doi.org/10.1016/0043-1354(76)90055-510.1016/0043-1354(76)90055-5Suche in Google Scholar

[19] Huber, M. M., Canonica, S., Park, G. Y., & von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 37, 1016–1024. DOI: 10.1021/es025896h. http://dx.doi.org/10.1021/es025896h10.1021/es025896hSuche in Google Scholar

[20] Liu, Z., Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: A review. Science of the Total Environment, 407, 731–748. DOI: 10.1016/j.scitotenv.2008.08.039. http://dx.doi.org/10.1016/j.scitotenv.2008.08.03910.1016/j.scitotenv.2008.08.039Suche in Google Scholar

[21] Manley, T. C., & Niegowski, S. J. (1967). Ozone. In A. Standen (Ed.), Kirk-Othmer encyclopedia of chemical technology (2nd ed.) (Vol. 14, pp. 410–431). New York, NY, USA: Interscience Publishers. Suche in Google Scholar

[22] Olak, M., Miller, J. S., & Ledakowicz, S. (2011). Degradation biocide o-phenylphenol in water solution by ozone. In Proceedings of the 20th IOA World Congress and 6th IUVA Ozone and UV World Congress, May 23–27, 2011 (pp. 1924–1931). Paris, France. Suche in Google Scholar

[23] Oppenländer, T. (2003). Photochemical purification of water and air. Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[24] Paris, F., Balaguer, P., Térouanne, B., Servant, N., Lacoste, C., Cravedi, J. P., Nicolas, J. C., & Sultan, C. (2002). Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines. Molecular and Cellular Endocrinology, 193, 43–49. DOI: 10.1016/s0303-7207(02)00094-1. http://dx.doi.org/10.1016/S0303-7207(02)00094-110.1016/S0303-7207(02)00094-1Suche in Google Scholar

[25] Peng, X., Yu, Y., Tang, C., Tan, J., Huang, Q., & Wang, Z. (2008). Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of the Total Environment, 397, 158–166. DOI: 10.1016/j.scitotenv.2008.02.059. http://dx.doi.org/10.1016/j.scitotenv.2008.02.05910.1016/j.scitotenv.2008.02.059Suche in Google Scholar

[26] Petrović, M., Eljarrat, E., López de Alda, M. J., & Barceló, D. (2001). Analysis and environmental levels of endocrinedisrupting compounds in freshwater sediments. Trends in Analytical Chemistry, 20, 637–648. DOI: 10.1016/s0165-9936(01)00118-2. http://dx.doi.org/10.1016/S0165-9936(01)00118-210.1016/S0165-9936(01)00118-2Suche in Google Scholar

[27] Rivas, J., Gimeno, O., Encinas, A. L., & Beltrán, F. (2009). Ozonation of the pharmaceutical compound ranitidine: Reactivity and kinetic aspects. Chemosphere, 76, 651–656. DOI: 10.1016/j.chemosphere.2009.04.028. http://dx.doi.org/10.1016/j.chemosphere.2009.04.02810.1016/j.chemosphere.2009.04.028Suche in Google Scholar

[28] Rosenfeldt, E. J., & Linden, K. G. (2004). Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology, 38, 5476–5483. DOI: 10.1021/es035413p. http://dx.doi.org/10.1021/es035413p10.1021/es035413pSuche in Google Scholar

[29] Sarakha, M., Burrows, H., & Bolte, M. (1996). Selective oxidation of meta- and para-phenylphenol photosensitized by [Co(NH3)5N3]2+ in aqueous solution. Journal of Photo chemistry and Photobiology A: Chemistry, 97, 81–86. DOI: 10.1016/1010-6030(96)04313-4. http://dx.doi.org/10.1016/1010-6030(96)04313-410.1016/1010-6030(96)04313-4Suche in Google Scholar

[30] Tay, K. S., Rahman, N. A., & Abas, M. R. B. (2010). Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation. Chemosphere, 81, 1446–1453. DOI: 10.1016/j.chemosphere.2010.09.004. http://dx.doi.org/10.1016/j.chemosphere.2010.09.00410.1016/j.chemosphere.2010.09.004Suche in Google Scholar PubMed

[31] Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauchg, H. J., Haist-Gulde, B., Preuss, G., Wilme, U., & Zulei-Seibert, N. (2002). Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology, 36, 3855–3863. DOI: 10.1021/es015757k. http://dx.doi.org/10.1021/es015757k10.1021/es015757kSuche in Google Scholar PubMed

[32] Yu, J. T., Bouwer, E. J., & Coelhan, M. (2006). Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agricultural Water Management, 86, 72–80. DOI: 10.1016/j.agwat.2006.06.015. http://dx.doi.org/10.1016/j.agwat.2006.06.01510.1016/j.agwat.2006.06.015Suche in Google Scholar

Published Online: 2013-5-28
Published in Print: 2013-9-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Evaluation of waste products in the synthesis of surfactants by yeasts
  2. Investigation of CO2 and ethylethanolamine reaction kinetics in aqueous solutions using the stopped-flow technique
  3. Alkali pre-treatment of Sorghum Moench for biogas production
  4. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste
  5. Model predictive control-based robust stabilization of a chemical reactor
  6. Decomposition of meta- and para-phenylphenol during ozonation process
  7. Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes
  8. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste
  9. Liquid-solid equilibrium for the NaCl-NaHCO3-Na2CO3-H2O system at 45°C. Validation of mixed solvent electrolyte model
  10. Investigation of turbulent flow field in a Kenics static mixer by Laser Doppler Anemometry
  11. Effect of flow-rate on ethanol separation in membrane distillation process
  12. Preparation of aluminium ammonium calcium phosphates using microwave radiation
  13. Continuous dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin: process parameters and by-products formation
  14. Preparation of sterically stabilized gold nanoparticles for plasmonic applications
  15. Synthesis and spectroscopic characterisation of (E)-2-(2-(9-(4-(1H-1,2,4-triazol-1-yl)butyl)-9H-carbazol-3-yl)vinyl)-3-ethylbenzo[d]thiazol-3-ium, a new ligand and potential DNA intercalator
  16. Microwave-assisted oxidation of alcohols by hydrogen peroxide catalysed by tetrabutylammonium decatungstate
  17. Dynamic shape and wall correction factors of cylindrical particles falling vertically in a Newtonian liquid
  18. Selective oxidation of metallic single-walled carbon nanotubes
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0325-9/pdf
Button zum nach oben scrollen