Computational Fluid Dynamics Study of New Vacuum Degassing Process
-
Manas Kumar Mondal
, Govind Sharan Gupta , Shin-ya Kitamura und Nobuhiro Maruoka
Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process, in terms of installment cost, is in between the tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-? turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that the design of the snorkel affects the melt circulation of the bath significantly.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- Editorial: Special Issue Contributed from CHEMECA 2008-Mathematical Modeling
- Advanced Modelling for Investigating the Effects of Reactor Operation on Controlled Living Emulsion Polymerization
- Influence of Jet Velocity on Jet Breakup in Immiscible Liquid-Liquid Systems
- Computational Fluid Dynamics Study of New Vacuum Degassing Process
- Kinetic Simulation of Methacrolein and Lactone Production from the Catalytic Oxidation of Isobutane over Lanthanide Phosphomolybdates
- Operability Analysis of MTBE Reactive Distillation Column using a Process Simulator
- MIQP-Based MPC in the Presence of Control Valve Stiction
- A Theoretical Investigation into Phase Change Clothing Benefits for Firefighters under Extreme Conditions
- Travelling Waves in a Two-Step Chain Branching Model with Heat Loss
- Three-Dimensional Numerical Study on Flames
- 2D Computer Simulations of Ohmic Heating of Milk Solutions in Laminar Annular Flow
- Inhibition of Premixed Methane-Air Flames with CF3I
- Adaptive Supervisory Control of an Industrial Steel Slab Reheating Furnace
- Analysis of an Immoblised Enzyme Reactor with Catalysts Activation
Artikel in diesem Heft
- Article
- Editorial: Special Issue Contributed from CHEMECA 2008-Mathematical Modeling
- Advanced Modelling for Investigating the Effects of Reactor Operation on Controlled Living Emulsion Polymerization
- Influence of Jet Velocity on Jet Breakup in Immiscible Liquid-Liquid Systems
- Computational Fluid Dynamics Study of New Vacuum Degassing Process
- Kinetic Simulation of Methacrolein and Lactone Production from the Catalytic Oxidation of Isobutane over Lanthanide Phosphomolybdates
- Operability Analysis of MTBE Reactive Distillation Column using a Process Simulator
- MIQP-Based MPC in the Presence of Control Valve Stiction
- A Theoretical Investigation into Phase Change Clothing Benefits for Firefighters under Extreme Conditions
- Travelling Waves in a Two-Step Chain Branching Model with Heat Loss
- Three-Dimensional Numerical Study on Flames
- 2D Computer Simulations of Ohmic Heating of Milk Solutions in Laminar Annular Flow
- Inhibition of Premixed Methane-Air Flames with CF3I
- Adaptive Supervisory Control of an Industrial Steel Slab Reheating Furnace
- Analysis of an Immoblised Enzyme Reactor with Catalysts Activation