Startseite Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite

  • Victor A. Drits , Bella B. Zviagina , Douglas K. McCarty EMAIL logo und Alfred L. Salyn
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Several finely dispersed low-temperature dioctahedral micas and micaceous minerals that form solid solutions from (Mg,Fe)-free illite to aluminoceladonite via Mg-rich illite, and from Fe3+-rich glauconite to celadonite have been studied by X-ray diffraction and chemical analysis. The samples have 1M and 1Md structures. The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a consistent decrease in the mica structural-unit thickness (2:1 layer + interlayer) or csinβ. In the first sample series csinβ decreases from 10.024 to 9.898 Å, and in the second from 10.002 to 9.961 Å. To reveal the basic factors responsible for these regularities, structural modeling was carried out to deduce atomic coordinates for 1M dioctahedral mica based on the unit-cell parameters and cation composition. For each sample series, the relationships among csinβ, maximum and mean thicknesses of octahedral and tetrahedral sheets and of the 2:1 layer, interlayer distance, and variations of the tetrahedral rotation angle, α, and the degree of basal surface corrugation, ΔZ, have been analyzed in detail.

The transitions from illite to aluminoceladonite and from glauconite to celadonite are accompanied by a slight increase in the mean thickness of the 2:1 layers and a steady decrease in the α angles, whereas the interlayer distance becomes smaller. These results are consistent with the generally accepted model where tetrahedral rotation is the main factor for the interlayer contraction in muscovitephengite structures: the smaller the rotation angle (α) the larger the ditrigonal ring of the tetrahedral sheet and the interlayer pseudo-hexagonal cavity, allowing the interlayer cation to sink and thus shorten the c parameter.

A new insight into the interpretation of the contraction of the mica layer thickness in dioctahedral micas has been achieved with the discovery that micas with the same or close mean interlayer distance, on one hand, have the same or nearly the same substitution of Al for Si; and on the other hand, they may have significantly different parameters of the interlayer structure, such as tetrahedral rotation, basal surface corrugation, ΔZ, and minimum and maximum interlayer distance. These results show that in dioctahedral 1M micas, the mean interlayer distance is determined by the amount of tetrahedral Al because the higher the Al for Si substitution, the stronger the repulsion between the basal O atoms and the larger the interlayer distance and csinβ parameter.

Received: 2009-5-26
Accepted: 2009-9-24
Published Online: 2015-4-2
Published in Print: 2010-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Brownleeite: A new manganese silicide mineral in an interplanetary dust particle
  2. Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions
  3. Multilevel modular mesocrystalline organization in red coral
  4. High-pressure behavior of 2M1 muscovite
  5. Chopinite-sarcopside solid solution, [(Mg,Fe)3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites
  6. Distribution of rare earth elements in lunar zircon
  7. Methodological re-evaluation of the electrical conductivity of silicate melts
  8. Site-specific infrared O-H absorption coefficients for water substitution into olivine
  9. High-pressure phase transition of a natural pigeonite
  10. Location and quantification of hydroxyl in wadsleyite: New insights
  11. Optical spectroscopic study of natural Fe-rich Pizzo Forno staurolite at different temperatures and pressures
  12. Metasideronatrite: Crystal structure and its relation with sideronatrite
  13. Optical absorption, luminescence, and electron paramagnetic resonance (EPR) spectroscopy of crystalline to metamict zircon: Evidence for formation of uranyl, manganese, and other optically active centers
  14. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite
  15. REE diffusion in olivine
  16. Phase transition induced by solid solution: The BCa-BMg substitution in richteritic amphiboles
  17. Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy
  18. Gayite, a new dufrénite-group mineral from the Gigante granitic pegmatite, Córdoba province, Argentina
  19. Galliskiite, Ca4Al2(PO4)2F8·5H2O, a new mineral from the Gigante granitic pegmatite, Córdoba province, Argentina
  20. Description and crystal structure of liversidgeite, Zn6(PO4)4·7H2O, a new mineral from Broken Hill, New South Wales, Australia
  21. Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte: A tool to constrain the thermal history of a seismic event
  22. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu2+/Eu3+ ratios by XANES
  23. Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH)
  24. X-ray diffraction and Mössbauer spectroscopy of Fe3+-bearing Mg-silicate post-perovskite at 128–138 GPa
Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3300/html
Button zum nach oben scrollen