Startseite Distribution of rare earth elements in lunar zircon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Distribution of rare earth elements in lunar zircon

  • A.A. Nemchin EMAIL logo , M.L. Grange und R.T. Pidgeon
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An investigation of rare earth elements (REE) in 15 zircon grains from lunar breccia sample 14321, combined with published analyses, has allowed lunar zircon grains to be separated into four distinctive types. Type-1 zircon is characterized by the relative depletion of light REE (LREE) resulting in a steep chondrite-normalized pattern. Type-2 zircon shows relative enrichment in the LREE compared to type-1 grains. Type-3 zircon also shows relatively high concentrations of LREE as well as a relative depletion in the heavy REE (HREE), which results in a relatively flat chondrite-normalized pattern. Type-4 zircon grains are characterized by the steepest chondrite-normalized REE pattern, with the lowest LREE and the highest HREE as well as by a distinctive positive Ce anomaly. Multiple analyses of REE in a complex impact modified zircon from breccia sample 73235 suggest a possibility that the very light REE from La to Nd were mobilized during impact. However, the main differences between the identified zircon types appear to be primary and reflect the original crystallization environment of zircon grains. These differences are not linked to major changes associated with the different suites of plutonic rocks, such as Mg- and alkali-suites, and quartz monzodiorites (QMD), but instead reflect small-scale variations in residual pockets of melt where zircon grains crystallized. For example, the presence of plagioclase in the immediate vicinity of zircon was responsible for the type-1 zircon REE pattern, whereas type-2 zircon was formed in the presence of pyroxene. The only exception is type-4 zircon, which was probably associated with some felsite and “granite” samples representing very late differentiates of lunar mafic magmas.

Received: 2009-5-24
Accepted: 2009-10-15
Published Online: 2015-4-2
Published in Print: 2010-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Brownleeite: A new manganese silicide mineral in an interplanetary dust particle
  2. Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions
  3. Multilevel modular mesocrystalline organization in red coral
  4. High-pressure behavior of 2M1 muscovite
  5. Chopinite-sarcopside solid solution, [(Mg,Fe)3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites
  6. Distribution of rare earth elements in lunar zircon
  7. Methodological re-evaluation of the electrical conductivity of silicate melts
  8. Site-specific infrared O-H absorption coefficients for water substitution into olivine
  9. High-pressure phase transition of a natural pigeonite
  10. Location and quantification of hydroxyl in wadsleyite: New insights
  11. Optical spectroscopic study of natural Fe-rich Pizzo Forno staurolite at different temperatures and pressures
  12. Metasideronatrite: Crystal structure and its relation with sideronatrite
  13. Optical absorption, luminescence, and electron paramagnetic resonance (EPR) spectroscopy of crystalline to metamict zircon: Evidence for formation of uranyl, manganese, and other optically active centers
  14. Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite
  15. REE diffusion in olivine
  16. Phase transition induced by solid solution: The BCa-BMg substitution in richteritic amphiboles
  17. Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy
  18. Gayite, a new dufrénite-group mineral from the Gigante granitic pegmatite, Córdoba province, Argentina
  19. Galliskiite, Ca4Al2(PO4)2F8·5H2O, a new mineral from the Gigante granitic pegmatite, Córdoba province, Argentina
  20. Description and crystal structure of liversidgeite, Zn6(PO4)4·7H2O, a new mineral from Broken Hill, New South Wales, Australia
  21. Evidence of dmisteinbergite (hexagonal form of CaAl2Si2O8) in pseudotachylyte: A tool to constrain the thermal history of a seismic event
  22. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu2+/Eu3+ ratios by XANES
  23. Density functional calculation of the infrared spectrum of surface hydroxyl groups on goethite (α-FeOOH)
  24. X-ray diffraction and Mössbauer spectroscopy of Fe3+-bearing Mg-silicate post-perovskite at 128–138 GPa
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3297/html
Button zum nach oben scrollen