Startseite Estimation of split-points in binary regression
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Estimation of split-points in binary regression

  • Dietmar Ferger und Jens Klotsche
Veröffentlicht/Copyright: 12. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Statistics & Risk Modeling
Aus der Zeitschrift Band 27 Heft 02

Abstract

Let Y=m(X)+ϵ be a regression model with a dichotomous output Y and a step function m with exact one jump at a point θ and two different levels a and b. In the applied sciences the parameter θ is interpreted as a split-point whereas b and 1-a are known as positive and negative predictive value, respectively. We prove n-consistency and a weak convergence type result for a two-step plug-in maximum likelihood estimator of θ. The limit variable is not normal, but a maximizing point of a compound Poisson process on the real line. Estimation of (a,b) yields the usual √n-consistency with normal limit. Both results can be extended to a multivariate weak limit theorem. It allows for the construction of asymptotic confidence intervals for (θ,a,b). The theory is applied to real life data of a large epidemiological study.


* Correspondence address: Dresden University of Technology, Department of Mathematics, Helmholtzstraße 10, 01062 Dresden, Deutschland,

Published Online: 2010-05-12
Published in Print: 2009-12

© by Oldenbourg Wissenschaftsverlag, München, Germany

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1524/stnd.2009.1023/html
Button zum nach oben scrollen