Startseite Wirtschaftswissenschaften Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improved estimation for elliptically symmetric distributions with unknown block diagonal covariance matrix

  • Dominique Fourdrinier , William E. Strawderman und Martin T. Wells
Veröffentlicht/Copyright: 25. September 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let X, U1, …, Un-1 be n random vectors in ℝp with joint density of the form f((X - θ)´-1(X - θ) +n-1j = 1U´j-1Uj) where both θ∈ℝp and ∑ are unknown, the scale matrix ∑ being supposed structured as a diagonal matrix, that is, ∑= diag(∑1, …,∑b) where, for 1 ≤ ib, ∑i is a pi × pi matrix and ∑i = 1bpi = p. We consider the problem of the estimation of θ with the invariant loss (δ - θ)´-1(δ - θ) and propose estimators which dominate the usual estimator δ0(X) = X. These domination results hold simultaneously for the entire class of such distributions. The proof uses a generalization of integration by parts formulae by Stein and Haff. We also consider estimating ∑ under LS(∑^,∑) = tr(∑^∑-1) - log |∑^∑-1| - p and propose estimators that dominate the unbiased estimator ∑^UB = diag(S1, …, Sb)/(n - 1), where Si = ∑j = 1n - 1UijU´ij and dim Uji = pi, for 1 ≤ ib and 1 ≤ jn - 1. The subsequent development of expressions is analogous to the unbiased estimators of risk technique and, in fact, reduces to an unbiased estimator of risk in the normal case.


* Correspondence address: Université de Rouen, LITIS, EA 4108, Avenue de lUniversit´e, BP. 12, 76801 Saint- ´ Etienne-du-Rouvray, Frankreich,

Published Online: 2009-09-25
Published in Print: 2009-04

© by Oldenbourg Wissenschaftsverlag, München, Germany

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1524/stnd.2008.1002/pdf
Button zum nach oben scrollen