Startseite Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes

  • Sabiha Sultana EMAIL logo , Noor Saeed , Noor Ul Amin , Abbas Khan , Rozina Khattak , Amir Naveed , Imran Rehan , Kamran Rehan , Mohib Ullah und Mujeeb Ur Rehman
Veröffentlicht/Copyright: 5. August 2025

Abstract

In the present work, an attempt was made to adopt solvent casting approach to synthesize and compare PEO/CNT and PMMA/CNT composites with varying concentration of CNTs while using SDS as a surfactant to enhance dispersion and prevent agglomeration. Different characterization techniques namely Thermal Gravimetric Analysis, Scanning Electron Microscopy, X-ray Diffraction Analysis and Universal Testing Machine were betrothed to characterize and evaluate the effect of CNT loading on PEO/CNT with PMMA/CNT composites. TGA revealed that thermal sturdiness of PEO/CNT’s lifts sharply by CNT’s whereas PMMA/CNT’s thermal stability increases gradually. SEM images exposed that functionalized multiwall CNT in PEO accelerates the crystal growth by showing fungus like morphology as witnessed in low magnification images. The low magnification SEM images for PMMA/CNT shows bubble like morphology. The sharp peaks and semi crystalline nature of PEO/CNT and Humps and increase in crystallinity with CNT for PMMA/CNT composites were confirmed by XRD. UTM investigation confirmed that plasticity amplifies with increasing CNT loading in fabricated hybrid. Similarly UTM investigation explored that incorporation of CNT in both polymers augments mechanical performance. Evaluation of decomposition thermal energy confirmed that CNT loading boosts up thermal activation energy more for PMMA in contrary to PEO. Based on our findings it is safe to conclude that physical attributes of polymeric system is highly sensitive to the CNT loadings and must be incorporated with care as linear increasing CNT effects various parameters (Crystallinity, thermal strength and mechanical performance) unsymmetrically.


Corresponding author: Sabiha Sultana, Department of Chemistry, Islamia College University Peshawar, Peshawar, Pakistan; and Environmental and Sustainability Institute, Penryn Campus, University of Exeter, Exeter, UK, E-mail:

Acknowledgement

The authors are very thankful to the financial assistance provided by the Project Management Unit (PMU) of Higher Education Department, Khyber Pakhtunkhwa under Project No. HEREF-118.

  1. Research ethics: This research did not involve any studies on human participants or animals requiring ethical approval. All experimental protocols complied with institutional and national guidelines.

  2. Informed consent: Not applicable. No human data or images were used in this study.

  3. Author contributions: Sabiha Sultana: Conceptualization, supervision, Funding acquisition, methodology, writing original draft, Noor Saeed: Project guidance, validation, data curation. Noor Ul Amin: project administration, investigation. Abbas Khan: writing original draft, Resources, Rozina Khattak: Writing review and editing. Amir Naveed: Investigation, validation. Imran Rehan: Formal analysis, data curation. Kamran Rehan: Data analysis, writing review and editing. Mohib Ullah: methodology, Resources. Mujeeb Ur Rehman: technical support, final approval. All authors have read and approved the final version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: No generative AI or machine learning tools were used in the preparation of this manuscript.

  5. Conflict of interest: The authors declare that there are no competing interests.

  6. Research funding: This work was supported by the Project Management Unit (PMU) of Higher Education Department, Khyber Pakhtunkhwa under Project No. HEREF-118.

  7. Data availability: All data supporting the findings of this study are available within the article. Additional data are available from the corresponding author upon request.

References

1. Li, Y.; Cook, W. D.; Moorhoff, C.; Huang, W. C.; Chen, Q. Z. Synthesis, Characterization and Properties of Biocompatible Poly (Glycerol Sebacate) Pre‐Polymer and Gel. Polym. Int. 2013, 62, 534–547; https://doi.org/10.1002/pi.4419.Suche in Google Scholar

2. Thakur, V. K.; Kessler, M. R. Self-Healing Polymer Nanocomposite Materials: a Review. Polymer 2015, 69, 369–383; https://doi.org/10.1016/j.polymer.2015.04.086.Suche in Google Scholar

3. Breuer, O.; Sundararaj, U. Big Returns from Small Fibers: a Review of Polymer/Carbon Nanotube Composites. Polym. Compos. 2004, 25, 630–645; https://doi.org/10.1002/pc.20058.Suche in Google Scholar

4. Adewunmi, A. A.; Ismail, S.; Sultan, A. S. Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: a Critical Review. J. Inorg. Organomet. Polym. Mater. 2016, 26, 717–737; https://doi.org/10.1007/s10904-016-0379-6.Suche in Google Scholar

5. Babel, V.; Hiran, B. L. A Review on Polyaniline Composites: Synthesis, Characterization, and Applications. Polym. Compos. 2021, 42, 3142–3157; https://doi.org/10.1002/pc.26048.Suche in Google Scholar

6. Koivula, M. J.; Eeva, T. Metal-Related Oxidative Stress in Birds. Environ. Pollut. 2010, 158, 2359–2370; https://doi.org/10.1016/j.envpol.2010.03.013.Suche in Google Scholar PubMed

7. Zhang, C.; Liu, X.; Liu, H.; Wang, Y.; Guo, Z.; Liu, C. Multi-Walled Carbon Nanotube in a Miscible PEO/PMMA Blend: Thermal and Rheological Behavior. Polym. Test. 2019, 75, 367–372; https://doi.org/10.1016/j.polymertesting.2019.03.003.Suche in Google Scholar

8. Xu, G.; Blum, F. D. Surfactant-Enhanced Free Radical Polymerization of Styrene in Emulsion Gels. Polymer 2008, 49, 3233–3238; https://doi.org/10.1016/j.polymer.2008.05.019.Suche in Google Scholar

9. Jyoti, J.; Arya, A. K.; Chockalingam, S.; Yadav, S. K.; Subhedar, K. M.; Dhakate, S. R.; Singh, B. P. Mechanical, Electrical and Thermal Properties of Graphene oxide-carbon Nanotube/ABS Hybrid Polymer Nanocomposites. J. Polym. Res. 2020, 27, 1–16; https://doi.org/10.1007/s10965-020-02252-9.Suche in Google Scholar

10. Makireddi, S.; Balasubramaniam, K. A 1–3 Piezoelectric Fiber Reinforced Carbon Nanotube Composite Sensor for Crack Monitoring. J. Inst. Eng. (India): Series C. 2016, 97, 345–356; https://doi.org/10.1007/s40032-015-0206-9.Suche in Google Scholar

11. Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Nanocomposite Polymer Foams. Compos. Sci. Technol. 2005, 65, 2344–2363; https://doi.org/10.1016/j.compscitech.2005.06.016.Suche in Google Scholar

12. Hong, K. H.; Oh, K. W.; Kang, T. J. Preparation of Conducting nylon‐6 Electrospun Fiber Webs by the in Situ Polymerization of Polyaniline. J. App. Polym. Sci. 2005, 96, 983–991; https://doi.org/10.1002/app.21002.Suche in Google Scholar

13. Hashim, A. A., Ed. Polymer thin films; IntechOpen: Austria, 2010; pp 1–338.Suche in Google Scholar

14. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yan, H.; Kim, F. One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389; https://doi.org/10.1002/adma.200390087.Suche in Google Scholar

15. Fathi, Z.; Nejad, R. A. K.; Mahmoodzadeh, H.; Satari, T. N. Investigating of a Wide Range of Concentrations of multi-walled Carbon Nanotubes on Germination and Growth of Castor Seeds (Ricinus communis L.). J. Plant Prot. Res. 2017; https://doi.org/10.1515/jppr-2017-0032.Suche in Google Scholar

16. Sultana, S., Khan, M. S., Humayun, M. (2012). Preparation, Morphology, and Thermal and Optical Properties of Thin Films of Ferric Chloride/Polyethylene Oxide Composites. Turk. J. Chem. 2012, 36, 709–716.10.3906/kim-1201-17Suche in Google Scholar

17. Abdelrazek, E. M.; Elashmawi, I. S.; Hezma, A. M.; Rajeh, A.; Kamal, M. Effect of an Encapsulate Carbon Nanotubes (CNTs) on Structural and Electrical Properties of PU/PVC Nanocomposites. Physica B Condens. Matter. 2016, 502, 48–55; https://doi.org/10.1016/j.physb.2016.08.040.Suche in Google Scholar

18. Saxena, V.; Malhotra, B. D. Prospects of Conducting Polymers in Molecular Electronics. Current Appl. Physics 2003, 3, 293–305; https://doi.org/10.1016/s1567-1739-02-00217-1.Suche in Google Scholar

19. Fahad, A. H. A. Q. Study the Effect of Carbon Nanotubes (CNTs) Coated Poly Methyl Methacrylate (PMMA) Microbeads in an Elastomer for Conducting Applications. Ph.D. Dissertation, Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, 2022.Suche in Google Scholar

20. Oh, W. C.; Chen, M. L. Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium (IV) n-butoxide. Bull. Korean Chem. Soc. 2008, 29, 159–164.10.5012/bkcs.2008.29.1.159Suche in Google Scholar

21. Kumar, A.; Kumar, V.; Awasthi, K. Polyaniline–Carbon Nanotube Composites: Preparation Methods, Properties, and Applications. Polym – Plast. Technol. Eng. 2018, 57, 70–97; https://doi.org/10.1080/03602559.2017.1300817.Suche in Google Scholar

22. Moghadam, H. Z.; Faghidian, S. A.; Jamal-Omidi, M. Agglomeration Effects of Carbon Nanotube on Residual Stresses in Polymer Nano Composite Using Experimental and Analytical Method. Mater. Res. Express 2018, 6, 035009; https://doi.org/10.1088/2053-1591/aaf370.Suche in Google Scholar

23. Saeedi, F.; Montazeri, A.; Bahari, Y.; Pishvaee, M.; Ranjbar, M. Synthesis and Characterization of Chitosan-Poly Vinyl Alcohol-Graphene Oxide Nanocomposites. J. Cheminformatics 2018, 7, 1–12; https://doi.org/10.4018/ijcce.2018010101.Suche in Google Scholar

24. Khan, M. S.; Shakoor, A. Ionic Conductance, Thermal and Morphological Behavior of PEO-graphene oxide-salts Composites. J. Chem. 2015, 2015; https://doi.org/10.1155/2015/695930.Suche in Google Scholar

25. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for lithium-ion Batteries. Nat. Commun. 2014, 5, 3529; https://doi.org/10.1038/ncomms4529.Suche in Google Scholar PubMed

26. Chigwada, G.; Kandare, E.; Wang, D.; Majoni, S.; Mlambo, D.; Wilkie, C. A.; Hossenlopp, J. M. Thermal Stability and Degradation Kinetics of Polystyrene/Organically-Modified Montmorillonite Nanocomposites. J. Nanosci. Nanotechnol. 2008, 8 (4), 1927–1936; https://doi.org/10.1166/jnn.2008.18258.Suche in Google Scholar

27. Dhaundiyal, A.; Singh, S. B.; Hanon, M. M.; Rawat, R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environ. Clim. Technol. 2018, 22 (1), 5–21; https://doi.org/10.1515/rtuect-2018-0001.Suche in Google Scholar

28. Taskin, O. S.; Yuca, N.; Papavasiliou, J.; Avgouropoulos, G. Interconnected Conductive Gel Binder for High Capacity Silicon Anode for Li-ion Batteries. Mater. Lett. 2020, 273, 127918; https://doi.org/10.1016/j.matlet.2020.127918.Suche in Google Scholar

29. Conidi, C.; Rodriguez-Lopez, A. D.; Garcia-Castello, E. M.; Cassano, A. Purification of Artichoke Polyphenols by Using Membrane Filtration and Polymeric Resins. Sep. Purif. Technol. 2015, 144, 153–161; https://doi.org/10.1016/j.seppur.2015.02.025.Suche in Google Scholar

30. Liu, C.; Fei, Y. Y.; Zhang, H. L.; Pan, C. Y.; Hong, C. Y. Effective Construction of Hyper Branched Multicyclic Polymer by Combination of ATRP, UV-induced Cyclization, and Self-Accelerating Click Reaction. Macromolecules 2018, 52, 176–184; https://doi.org/10.1021/acs.macromol.8b02192.Suche in Google Scholar

31. Coats, A. W.; Redfern, J. P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69; https://doi.org/10.1038/201068a0.Suche in Google Scholar

32. Sultana, S.; Khan, M. S.; Rehan, I.; Rehan, K.; Humayun, M.; Tabassum, S.; Minhaz, A. Morphological, Mechanical and Thermo-Kinetic Characterization of Coal Ash Incorporated High Performance PEO/PMMA Thin Film Electrolyte Composites. Mater. Res. Express 2017, 4, 115304; https://doi.org/10.1088/2053-1591/aa9757.Suche in Google Scholar

Received: 2023-03-12
Accepted: 2025-07-15
Published Online: 2025-08-05
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0226/pdf
Button zum nach oben scrollen