Abstract
A numerical investigation is carried out to study ignition events of different premixed stoichiometric fuel/air mixtures by hot exhaust gas jets. The simulations are performed for premixed, stoichiometric hydrogen/air, ethylene/air and propane/air mixtures in configurations relevant to safety applications. The ignition events of the different fuel/air mixtures by their corresponding exhaust gas jet are examined qualitatively analyzing processes and conditions leading to ignition. A stand-alone probability density function (PDF) method in connection with a projection method (PM) to calculate the mean pressure is used to model the turbulent flow. The transport equation for the joint velocity – turbulent frequency – scalar PDF is solved by a Monto Carlo/particle method. In order to reduce the computational costs concerning the chemical kinetics the reaction diffusion manifolds (REDIM) technique is used to get an appropriate reduced kinetic scheme.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft within the Research Group FOR 1447. The authors gratefully acknowledge the support of DLR-Institute of Combustion Technology (Stuttgart) for providing access to the detailed description of the propane mechanism.
References
1. A. W. Cox, F. P. Lees, M. L. Ang, Classification of Hazardeous Locations, 6th ed., Institution of Chemical Engineers, Warwickshire, UK (2000).Suche in Google Scholar
2. G. Bottrill, D. Cheyne, C. Vijayaraghavan, Practical Electrical Equipment and Installations in Hazardous Areas, Newnes, London (2005).Suche in Google Scholar
3. IEC60079-0, Explosive Atmospheres Part 0: Equipment – General Requirements (2011).Suche in Google Scholar
4. IEC60079-1, Explosive Atmospheres Part 1: Equipment Protection by Flameproof Enclosures “d” (2014).Suche in Google Scholar
5. R. Sadanandan, Ignition by hot Gas Jets – A detailed Investigation using 2D time resolved Laser Techniques and numerical Simulations, Phd. thesis, University of Karlsruhe, Karlsruhe (2007).Suche in Google Scholar
6. M. Beyer, Über den Zünddurchschlag explodierender Gasgemische an Gehäusen der Zündschutzart ‘Druckfeste Kapselung’, Phd. thesis, University of Braunschweig, Braunschweig (1996).Suche in Google Scholar
7. Ø. Larson, R. Eckhoff, J. Loss Prev. Proc. Industr. 13 (2000) 341.10.1016/S0950-4230(99)00035-2Suche in Google Scholar
8. R. Sadanandan, D. Markus, R. Schiessl, U. Maas, J. Olofsson, H. Seyfried, M. Richter, M. Aldén, Proc. Combust. Inst. 31 (2007) 719.10.1016/j.proci.2006.08.027Suche in Google Scholar
9. H. Phillips, Combust. Flame 7, (1963) 129.10.1016/0010-2180(63)90170-6Suche in Google Scholar
10. H. Phillips, Combust. Flame 20, (1973) 121.10.1016/S0010-2180(73)81263-5Suche in Google Scholar
11. J. Carpio, I. Iglesias, M. Vera, A. Sánchez, A. Liñán, Int. J. Hydrog. Energ. 38, (2013) 3105.10.1016/j.ijhydene.2012.12.082Suche in Google Scholar
12. J. Carpio, I. Iglesias, M. Vera, A. Sánchez, Int. J. Hydrog. Energ. 42 (2017) 1298.10.1016/j.ijhydene.2016.10.010Suche in Google Scholar
13. A. Ghorbani, G. Steinhilber, D. Markus, U. Maas, Combust. Sci. Technol. 186 (2014) 1582.10.1080/00102202.2014.936762Suche in Google Scholar
14. A. Ghorbani, D. Markus, G. Steinhilber, U. Maas, J. Loss Prevent. Proc. Ind. 36 (2015) 539.10.1016/j.jlp.2015.03.021Suche in Google Scholar
15. A. Ghorbani, G. Steinhilber, D. Markus, U. Maas, Combust. Theor. Model. 19 (2015) 188.10.1080/13647830.2014.999129Suche in Google Scholar
16. IEC60079-20-1, Explosive Atmospheres Part 20-1: Test Methods and Data – Classification of Mixtures of Gases or Vapours with Air (2010).Suche in Google Scholar
17. A. Ghorbani, G. Steinhilber, D. Markus, U. Maas, Proc. Combust. Inst. 35 (2015) 2191.10.1016/j.proci.2014.06.104Suche in Google Scholar
18. A. Ghorbani, S. Fischer, G. Steinhilber, D. Markus, U. Maas, Numerical Investigation and Comparison of Hydrogen/Air and Propane/Air Explosion by Hot Jets, in Proceedings of the25th International Colloquium on the Dynamics of Explosions and Reactive Systems, paper 306 (2015).Suche in Google Scholar
19. S. Fischer, D. Markus, U. Maas, Numerical Investigation of the Ignition of Diethyl Ether/Air and Propane/Air Mixtures by Hot Jets, Proceedings of the11th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, ISH140 (2016).10.1016/j.jlp.2017.03.010Suche in Google Scholar
20. S. B. Pope, Turbulent Flows, Cambridge University Press, New York (2000).10.1017/CBO9780511840531Suche in Google Scholar
21. R. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, New York (2003).10.1017/CBO9780511610103Suche in Google Scholar
22. S. A. Orszag, G. S. Patterson Jr., Phys. Rev. Lett. 28 (1972) 76.10.1103/PhysRevLett.28.76Suche in Google Scholar
23. D. C. Wilcox, Turbulence Modeling for CFD, 3rd ed., DCW Industries, La Cañada, California (2006).Suche in Google Scholar
24. W. P. Jones, B. E. Launder, Int. J. Heat Mass Transf. 15 (1972) 301.10.1016/0017-9310(72)90076-2Suche in Google Scholar
25. B. E. Launder, G. J. Reece, W. Rodi, J. Fluid Mech. Digit. Arch. 68 (1975) 537.10.1017/S0022112075001814Suche in Google Scholar
26. J. Smagorinsky, Month. Weath. Rev. 91 (1963) 99.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2Suche in Google Scholar
27. S. B. Pope, Progr. Energ. Combust. Sci. 11 (1985) 119.10.1016/0360-1285(85)90002-4Suche in Google Scholar
28. P. Van Slooten, S. Pope, Phys. Fluid. 10 (1998) 246.10.1063/1.869564Suche in Google Scholar
29. D. Howarth, Progr. Energ. Combust. Sci. 36 (2010) 168.10.1016/j.pecs.2009.09.003Suche in Google Scholar
30. W. Hawthorne, D. Weddell, H. Hottel, Symp. Combust. Flame Explos. Phenom. 1 (1948) 266.10.1016/S1062-2896(49)80035-3Suche in Google Scholar
31. V. Bykov, U. Maas, Combust. Theor. Model. 11 (2007) 839.10.1080/13647830701242531Suche in Google Scholar
32. S. B. Pope, J. Comp. Phys. 117 (1995) 332.10.1006/jcph.1995.1070Suche in Google Scholar
33. D. Haworth, S. B. Pope, Phys. Fluid. 30 (1987) 1026.10.1063/1.866301Suche in Google Scholar
34. S. B. Pope, Phys. Fluid. 26 (1983) 3448.10.1063/1.864125Suche in Google Scholar
35. M. Stöllinger, S. Heinz, Combust. Flame 157 (2010) 1671.10.1016/j.combustflame.2010.01.015Suche in Google Scholar
36. J. Janicka, W. Kolbe, W. Kollmann, J. Non-Equil. Thermodyn. 4 (1979) 47.10.1515/jnet.1979.4.1.47Suche in Google Scholar
37. J. Warnatz, U. Maas, R. Dibble, Combustion – Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th ed., Springer, Berlin (2006).Suche in Google Scholar
38. S. Pope, Proc. Combust. Inst. 34 (2013) 1.10.1016/j.proci.2012.09.009Suche in Google Scholar
39. U. Maas, V. Bykov, Proc. Combust. Inst. 33 (2011) 1253.10.1016/j.proci.2010.06.117Suche in Google Scholar
40. G. Steinhilber, Numerische Simulation turbulenter Verbrennungsprozesse mittels statistischer Verfahren und REDIM reduzierter Kinetik, Phd. thesis, Karlsruher Institute of Technology, Karlsruhe (2015).Suche in Google Scholar
41. G. Stahl, J. Warnatz, Combust. Flame 85 (1991) 285.10.1016/0010-2180(91)90134-WSuche in Google Scholar
42. A. Ghorbani, A Stand-Alone PDF Method for Unsteady Reacting Turbulent Flows: Ignition by Hot Jets, Phd. thesis, Karlsruher Institute of Technology, Karlsruhe (2015).Suche in Google Scholar
43. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York (2002).Suche in Google Scholar
44. R. S. Barlow, J. H. Frank, A. N. Karpetis, J. Y. Chen, Combust. Flame 143 (2005) 433.10.1016/j.combustflame.2005.08.017Suche in Google Scholar
45. Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, T. Lu, Combust. Flame. 159 (2012) 265.10.1016/j.combustflame.2011.05.023Suche in Google Scholar
46. T. Kathrotia, Reaction Kinetics Modelling of OH*, CH* and C2* Chemiluminescence, Phd. thesis, Rupertus Carola University of Heidelberg, Heidelberg (2011).Suche in Google Scholar
47. U. Maas, J. Warnatz, Combust. Flame 74 (1988) 53.10.1016/0010-2180(88)90086-7Suche in Google Scholar
48. H. Schlichting, K. Gersten, Boundary-Layer Theory, 8th ed., Springer, Berlin (2000).10.1007/978-3-642-85829-1Suche in Google Scholar
49. C. I. Hegheş, C1-C4 Hydrocarbon Oxidation Mechanism, Phd. thesis, Rupertus Carola University of Heidelberg, Heidelberg (2006).Suche in Google Scholar
50. J. Baker, G. Skinner, Combust. Flame 19 (1972) 347.10.1016/0010-2180(72)90004-1Suche in Google Scholar
51. C. Jachimowski, Combust. Flame 29 (1977) 55.10.1016/0010-2180(77)90093-1Suche in Google Scholar
52. K. Kumar, G. Mittal, C.-J. Sung, C. Law, Combust. Flame 153 (2008) 343.10.1016/j.combustflame.2007.11.012Suche in Google Scholar
53. H. Wang, A. Laskin, A Comprehensive Kinetic Model of Ethylene and Acetylene Oxidation at High Temperatures, A Progress Report: submitted to: Department of Mechanical and Aerospace Engineering Princeton University (1998).Suche in Google Scholar
54. A. Abdelsamie, G. Fru, T. Oster, F. Dietzsch, G. Janiga, D. Thévenin, Comput. Fluid. 131 (2016) 123.10.1016/j.compfluid.2016.03.017Suche in Google Scholar
55. P. Paul, J. Warnatz, Symp (Int) Combustion27 (1998) 495.10.1016/S0082-0784(98)80439-6Suche in Google Scholar
56. J. Warnatz, Berichte der Bunsengesellschaft/Phys. Chem. Chem. Phys. 82 (1978) 643.10.1002/bbpc.197800134Suche in Google Scholar
57. M. Hassan, K. Aung, O. Kwon, G. Faeth, J. Propul. Power 14 (1998) 479.10.2514/2.5304Suche in Google Scholar
58. G. Gibbs, H. Calcote, J. Chem. Eng. Data 4 (1959) 226.10.1021/je60003a011Suche in Google Scholar
59. A. Ghorbani, S. Fischer, G. Steinhilber, D. Markus, U. Maas, Application of a Stand-Alone PDF Method to Investigate the Ignition of Propane/Air and Hydrogen/Air Mixture by Unsteady Turbulent Jets, in Proceedings of the7th European Combustion Meeting, P4-02 (2015).Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Safety-Relevant Ignition Processes
- Low-Temperature Autoignition of Diethyl Ether/O2 Mixtures: Mechanistic Considerations and Kinetic Modeling
- Numerical Simulation of the Ignition of Fuel/Air Gas Mixtures Around Small Hot Particles
- Ignition by Electrical Discharges
- Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times
- Comparison Between ODT and DNS for Ignition Occurrence in Turbulent Premixed Jet Combustion: Safety-Relevant Applications
- Ignition by Hot Free Jets
- PDF Simulations of the Ignition of Hydrogen/Air, Ethylene/Air and Propane/Air Mixtures by Hot Transient Jets
Artikel in diesem Heft
- Frontmatter
- Safety-Relevant Ignition Processes
- Low-Temperature Autoignition of Diethyl Ether/O2 Mixtures: Mechanistic Considerations and Kinetic Modeling
- Numerical Simulation of the Ignition of Fuel/Air Gas Mixtures Around Small Hot Particles
- Ignition by Electrical Discharges
- Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times
- Comparison Between ODT and DNS for Ignition Occurrence in Turbulent Premixed Jet Combustion: Safety-Relevant Applications
- Ignition by Hot Free Jets
- PDF Simulations of the Ignition of Hydrogen/Air, Ethylene/Air and Propane/Air Mixtures by Hot Transient Jets