Startseite Components of rice husk biochar in promoting the growth, sporulation and iturin A production of Bacillus sp. strain IA
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Components of rice husk biochar in promoting the growth, sporulation and iturin A production of Bacillus sp. strain IA

  • Shohei Ebe ORCID logo EMAIL logo , Tatsuya Ohike , Masahiro Okanami und Takashi Ano
Veröffentlicht/Copyright: 27. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In a previously study, the Bacillus sp. strain IA was successfully isolated with high sensitivity to rice husk biochar (RHB). Moreover, RHB promoted an antibiotic iturin A production by strain IA. In order to develop the biocontrol agent, we attempted to reveal the functions of the RHB in promoting the production of iturin A by strain IA. The promotion effects of growth, sporulation and iturin A production of strain IA by the RHB were explained as follows. First, the manganese ion, released from RHB, promoted the sporulation and iturin A production of strain IA. Second, the silicon dioxide contained in RHB adsorbed the metabolic inhibitor(s) and promoted the iturin A production of strain IA. Finally, the combination of manganese ion and silicon dioxide promoted the growth, sporulation and iturin A production of the Bacillus sp. strain IA. To culture strain IA in the medium combining manganese ion and silicon dioxide, the total cells, spore cells and iturin A production increased 15 times, 10,000 times and 18 times higher than the control medium, respectively.

References

1. Food and Agriculture Organization of the United Nations Rice market monitor, XX, 4 2017.Suche in Google Scholar

2. Wang W, Martin JC, Fan X, Han A, Luo Z, Sun L. Silica nanoparticles and frameworks from rice husk biomass. ACS Appl Mater Interfaces 2012;4:977–81.10.1021/am201619uSuche in Google Scholar PubMed

3. Bansal V, Ahmad A, Sastry M. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 2006;128:14059–66.10.1021/ja062113+Suche in Google Scholar PubMed

4. Ishii T, Kadoya K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development. J Japanese Soc Hortic Sci 1994;63:529–35.10.2503/jjshs.63.529Suche in Google Scholar

5. Warnock DD, Lehmann J, Kuyper TW, Rillig MC. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 2007;300:9–20.10.1007/s11104-007-9391-5Suche in Google Scholar

6. Graber ER, Meller HY, Kolton M, Cytryn E, Silber A, Rav David D, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010;337:481–96.10.1007/s11104-010-0544-6Suche in Google Scholar

7. Song Y, Zhang X, Ma B, Chang SX, Gong J. Biochar addition affected the dynamics of ammonia oxidizers and nitrificationin microcosms of a coastal alkaline soil. Biol Fertil Soils 2014;50:321–32.10.1007/s00374-013-0857-8Suche in Google Scholar

8. Ebe S, Ohike T, Matsukawa T, Okanami M, Kajiyama S, Takashi A. Promotion of lipopeptide antibiotic production by Bacillus sp. IA in the presence of rice husk biochar. J Pestic Sci 2019;44:33–40.10.1584/jpestics.D18-042Suche in Google Scholar PubMed PubMed Central

9. Sovu TM, Savadogo P, Odén PC. Facilitation of forest landscape restoration on abandoned swidden fallows in laos using mixed-species planting and biochar application. Silva Fenn 2012;46:39–51.10.14214/sf.444Suche in Google Scholar

10. Phae CG, Shoda M, Kita N, Nakano M, Ushiyama K. Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22. Japanese J Phytopathol 1992;58:329–39.10.3186/jjphytopath.58.329Suche in Google Scholar

11. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 1996;62:4081–5.10.1128/aem.62.11.4081-4085.1996Suche in Google Scholar PubMed PubMed Central

12. Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Ind Eng Chem Res 2015;54:7241–50.10.1021/acs.iecr.5b01589Suche in Google Scholar

13. Rao GR, Sastry ARK, Rohatgi PK. Nature and reactivity of silica available in rice husk and its ashes. Bull Mater Sci 1989;12: 469–79.10.1007/BF02744917Suche in Google Scholar

14. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 2006;101:514–25.10.1111/j.1365-2672.2005.02736.xSuche in Google Scholar PubMed

15. Hirota R, Hata Y, Ikeda T, Ishida T, Kuroda A. The silicon layer supports acid resistance of Bacillus cereus spores. J Bacteriol 2010;192:111–6.10.1128/JB.00954-09Suche in Google Scholar PubMed PubMed Central

16. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 2008;16:115–25.10.1016/j.tim.2007.12.009Suche in Google Scholar PubMed

17. Chen H, Wang L, Su CX, Gong GH, Wang P, Yu ZL. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 2008;47:180–6.10.1111/j.1472-765X.2008.02412.xSuche in Google Scholar PubMed

18. Arrebola E, Jacobs R, Korsten L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 2010;108:386–95.10.1111/j.1365-2672.2009.04438.xSuche in Google Scholar PubMed

19. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 2007;20:430–40.10.1094/MPMI-20-4-0430Suche in Google Scholar PubMed

20. Mizumoto S, Hirai M, Shoda M. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 2007;75:1267–74.10.1007/s00253-007-0973-1Suche in Google Scholar PubMed

21. Hsieh FC, Lin TC, Meng M, Kao SS. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 2008;56:1–5.10.1007/s00284-007-9003-xSuche in Google Scholar PubMed

Received: 2018-12-27
Revised: 2019-02-12
Accepted: 2019-03-02
Published Online: 2019-03-27
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2018-0223/html
Button zum nach oben scrollen