Startseite Nonlinear forced vibration of rotating composite laminated cylindrical shells under hygrothermal environment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonlinear forced vibration of rotating composite laminated cylindrical shells under hygrothermal environment

  • Xiao Li , Wentao Jiang , Xiaochao Chen und Zhihong Zhou EMAIL logo
Veröffentlicht/Copyright: 30. Juni 2021

Abstract

This work aims to study nonlinear vibration of rotating composite laminated cylindrical shells under hygrothermal environment and radial harmonic excitation. Based on Love’s nonlinear shell theory, and considering the effects of rotation-induced initial hoop tension, centrifugal and Coriolis forces, the nonlinear partial differential equations of the shells are derived by Hamilton’s principle, in which the constitutive relation and material properties of the shells are both hygrothermal-dependent. Then, the Galerkin approach is applied to discrete the nonlinear partial differential equations, and the multiple scales method is adopted to obtain an analytical solution on the dynamic response of the nonlinear shells under primary resonances of forward and backward traveling wave, respectively. The stability of the solution is determined by using the Routh–Hurwitz criterion. Some interesting results on amplitude–frequency relations and nonlinear dynamic responses of the shells are proposed. Special attention is given to the combined effects of temperature and moisture concentration on nonlinear resonance behavior of the shells.


Corresponding author: Zhihong Zhou, Department of Mechanics & Engineering, Sichuan University, Chengdu 610065, PR China, E-mail:

Funding source: Natural Science Foundation of Fujian Province

Award Identifier / Grant number: 2020J05103

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 12002225

Award Identifier / Grant number: 12002088

Award Identifier / Grant number: 12072213

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (Grant Nos. 12002225, 12072213, 12002088) and Natural Science Foundation of Fujian Province (Grant No. 2020J05103).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A

The coefficients L ij and A non in Eq. (12) are given as

(A.1) L 11 = A 11 2 x 2 + A 66 R 2 2 θ 2 + 2 A 16 R 2 x θ + ρ t Ω 2 2 θ 2 ρ t 2 t 2

(A.2) L 12 = A 16 + 2 B 16 R 2 x 2 + A 26 R 2 + B 26 R 3 2 θ 2 + A 12 + A 66 R + B 12 + 2 B 66 R 2 2 x θ

(A.3) L 13 = A 12 R x + A 26 R 2 θ B 11 3 x 3 B 12 + 2 B 66 R 2 3 x θ 2 3 B 16 R 3 x 2 θ B 26 R 3 3 θ 3

(A.4) L 14 = A 11 2 x 2 + A 66 R 2 2 θ 2 + 2 A 16 R 2 x θ

(A.5) L 15 = A 16 R 2 x 2 + A 26 R 3 2 θ 2 + A 12 + A 66 R 2 2 x θ

(A.6) L 21 = L 12

(A.7) L 22 = A 66 + 2 D 66 R 2 + 3 B 66 R 2 x 2 + A 22 R 2 + D 22 R 4 + 2 B 22 R 3 2 θ 2 + 2 A 26 R + 6 B 26 R 2 + 4 D 26 R 3 2 x θ + ρ t Ω 2 2 θ 2 2 t 2

(A.8) L 23 = A 26 R + 2 B 26 R 2 x + A 22 R 2 + B 22 R 3 θ B 16 + 2 D 16 R 3 x 3 D 22 R 4 + B 22 R 3 3 θ 3 D 12 + 4 D 66 R 2 + B 12 + 2 B 66 R 3 x 2 θ 3 B 26 R 2 + 4 D 26 R 3 3 x θ 2 + 2 ρ t Ω 2 θ Ω t

(A.9) L 24 = L 21

(A.10) L 25 = A 22 R 3 + B 22 R 4 2 θ 2 + A 66 R + B 66 R 2 2 x 2 + 2 A 26 R 2 + 2 B 26 R 3 2 x θ

(A.11) L 31 = L 13

(A.12) L 32 = L 23

(A.13) L 33 = A 22 R 2 D 11 4 x 4 D 22 R 4 4 θ 4 2 D 12 + 2 D 66 R 2 × 4 x 2 θ 2 4 D 16 R 4 x 3 θ 4 D 26 R 3 4 x θ 3 + 2 B 12 R A x T H 2 x 2 + 2 B 22 R 3 A θ T H R 2 2 θ 2 + 4 B 26 R 2 2 A x θ T H R 2 x θ + ρ t Ω 2 2 θ 2 2 t 2

(A.14) A non = A 11 u x 2 w x 2 + 2 u x 2 w x + 3 2 w x 2 2 w x 2 + 2 A 12 + 2 A 66 R 2 w θ w x 2 w x θ + A 22 R 3 × 1 2 w θ 2 + 2 v θ 2 w θ + v θ 2 w θ 2 + w 2 w θ 2 + 3 2 R × w θ 2 2 w θ 2 + A 12 R 2 2 w θ 2 u x + A 12 + A 66 R 2 × w θ 2 u x θ + A 66 R 2 2 u θ 2 w x + 2 u θ 2 w x θ + A 12 + A 66 R 2 v x θ w x + A 66 R 2 v x 2 w θ + 2 2 w x θ v x + A 12 R v θ 2 w x 2 + 1 2 w x 2 + w 2 w x 2 + A 12 + 2 A 66 2 R 2 w x 2 2 w θ 2 + w θ 2 2 w x 2 + B 22 R 4 2 v θ 2 w θ + v θ 2 w θ 2 + B 12 + 2 B 66 R 2 2 v x θ w x + 2 B 12 + B 66 R 2 × 2 w θ 2 2 w x 2 + 2 B 12 + B 66 R 2 2 w x θ 2 + B 12 R 2 v θ 2 w x 2 + 2 B 66 R 2 2 v x 2 w θ + 2 v x 2 w x θ + A 16 + 2 B 16 R 2 v x 2 w x + 2 w x 2 v x + A 16 R 2 2 u x θ w x + 2 2 w x θ u x + 2 u x 2 w θ + u θ 2 w x 2 + 3 w x 2 2 w x θ + 3 w x w θ 2 w x 2 + A 26 R 2 + B 26 R 3 2 2 v x θ w θ + 2 v θ 2 w x θ + 2 v θ 2 w x + v x 2 w θ 2 + A 26 R 3 2 u θ 2 w θ + u θ 2 w θ 2 + 3 w θ 2 2 w x θ + 3 w x w θ 2 w θ 2 + A 26 R 2 w x w θ + 2 w 2 w x θ

in which the stiffness components A ij , B ij and D ij in Eqs. (A.1)(A.14) are defined as ( A i j , B i j , D i j ) = h / 2 h / 2 Q ̄ i j 1 , z , z 2 d z i , j = 1,2,6 .

Set H = (H x H θ H ) t = ε T + ε H , then the stiffness terms A x T H , A θ T H and A x θ T H in Eq. (A.13) generated by hygrothermal expansion deformation are expressed as

A x T H = h / 2 h / 2 Q ̄ 11 H x + Q ̄ 12 H θ + Q ̄ 16 H x θ d z A θ T H = h / 2 h / 2 Q ̄ 12 H x + Q ̄ 22 H θ + Q ̄ 26 H x θ d z A x θ T H = h / 2 h / 2 Q ̄ 16 H x + Q ̄ 26 H θ + Q ̄ 66 H x θ d z

Appendix B

The coefficients in Eq. (16) are expressed as

(B.1) M = ρ t π L 1 + α 11 2 + β 11 2 2 , C = ρ t π L β 11 + β 11 2 , K = π L K t 2 K r = ρ t π L K i 2 , f n o n = A 11 λ 1 4 9 π L 64 + A 22 3 π L 64 R 4 + λ 1 2 π L A 12 + 2 A 66 32 R 2 F 1 = F 0 sin λ 1 x 0 cos θ 0 , F 2 = F 0 sin λ 1 x 0 sin θ 0

where

(B.2) K t = α 11 2 A 11 λ 1 2 + A 66 R 2 2 λ 1 α 11 β 11 A 12 + A 66 R + B 12 + 2 B 66 R 2 2 α 11 A 12 R λ 1 + B 11 λ 1 3 + B 12 + 2 B 66 R 2 λ 1 + β 11 2 A 22 R 2 + D 22 R 4 + 2 B 22 R 3 + β 11 2 λ 1 2 A 66 + 2 D 66 R 2 + 4 B 66 R + 2 β 11 A 22 R 2 + B 22 R 3 + D 22 R 4 + B 22 R 3 + D 12 + 4 D 66 R 2 + B 12 + 2 B 66 R λ 1 2 + A 22 R 2 + D 11 λ 1 4 + D 22 R 4 + 2 D 12 + 2 D 66 R 2 λ 1 2 + 2 B 12 R A x T H λ 1 2 + 2 B 22 R 3 A θ T H R 2

(B.3) K i = α 11 2 + β 11 2 + 4 β 11 + 1

References

[1] Z. Qin, X. Pang, B. Safaei, and F. Chu, “Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions,” Compos. Struct., vol. 220, pp. 847–860, 2019. https://doi.org/10.1016/j.compstruct.2019.04.046.Suche in Google Scholar

[2] X. Zhao, B. Zhang, and Y. Li, “Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment,” J. Vib. Contr., vol. 23, pp. 673–692, 2016. https://doi.org/10.1177/1077546315581943.Suche in Google Scholar

[3] X. Li, C. C. Du, and Y. H. Li, “Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment,” Appl. Math. Model., vol. 59, pp. 393–409, 2018. https://doi.org/10.1016/j.apm.2018.01.048.Suche in Google Scholar

[4] W. Zhang, S. W. Yang, and J. J. Mao, “Nonlinear radial breathing vibrations of CFRP laminated cylindrical shell with non-normal boundary conditions subjected to axial pressure and radial line load at two ends,” Compos. Struct., vol. 190, pp. 52–78, 2018. https://doi.org/10.1016/j.compstruct.2018.01.091.Suche in Google Scholar

[5] K. Y. Lam and C. T. Loy, “Free vibrations of a rotating multi-layered cylindrical shell,” Int. J. Solid Struct., vol. 32, pp. 647–663, 1995. https://doi.org/10.1016/0020-7683(94)00143-k.Suche in Google Scholar

[6] K. Y. Lam and C. T. Loy, “Analysis of rotating laminated cylindrical shells by different thin shell theories,” J. Sound Vib., vol. 186, pp. 23–35, 1995. https://doi.org/10.1006/jsvi.1995.0431.Suche in Google Scholar

[7] Y. H. Dong, Y. H. Li, D. Chen, and J. Yang, “Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion,” Compos. B Eng., vol. 145, pp. 1–13, 2018. https://doi.org/10.1016/j.compositesb.2018.03.009.Suche in Google Scholar

[8] Y. H. Dong, B. Zhu, Y. Wang, L. W. He, Y. H. Li, and J. Yang, “Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads,” Appl. Math. Model., vol. 71, pp. 331–348, 2019. https://doi.org/10.1016/j.apm.2019.02.024.Suche in Google Scholar

[9] Y. H. Dong, X. Y. Li, K. Gao, Y. H. Li, and J. Yang, “Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment,” Nonlinear Dynam., vol. 99, pp. 981–1000, 2020. https://doi.org/10.1007/s11071-019-05297-8.Suche in Google Scholar

[10] X. Li, Q. Xu, and Y. H. Li, “Parametric instability of a rotating axially loaded FG cylindrical thin shell under both axial disturbances and thermal effects,” Z. Naturforsch., vol. 73, pp. 1105–1119, 2018. https://doi.org/10.1515/zna-2018-0279.Suche in Google Scholar

[11] A. R. Ghasemi and M. Meskini, “Free vibration analysis of porous laminated rotating circular cylindrical shells,” J. Vib. Contr., vol. 25, pp. 2494–2508, 2019. https://doi.org/10.1177/1077546319858227.Suche in Google Scholar

[12] X. Li, “Parametric resonances of rotating composite laminated nonlinear cylindrical shells under periodic axial loads and hygrothermal environment,” Compos. Struct., vol. 255, p. 112887, 2021. https://doi.org/10.1016/j.compstruct.2020.112887.Suche in Google Scholar

[13] Y. W. Wang and D. F. Wu, “Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory,” Aero. Sci. Technol., vol. 66, pp. 83–91, 2017. https://doi.org/10.1016/j.ast.2017.03.003.Suche in Google Scholar

[14] Y. W. Wang, T. R. Fu, and W. Zhang, “An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: applications to dynamic stability analysis,” Thin-Walled Struct., vol. 160, p. 107400, 2021. https://doi.org/10.1016/j.tws.2020.107400.Suche in Google Scholar

[15] P. Malekzadeh and Y. Heydarpour, “Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment,” Compos. Struct., vol. 94, pp. 2971–2981, 2012. https://doi.org/10.1016/j.compstruct.2012.04.011.Suche in Google Scholar

[16] X. Y. Song, J. Y. Zhai, Y. G. Chen, and Q. K. Han, “Traveling wave analysis of rotating cross-ply laminated cylindrical shells with arbitrary boundaries conditions via Rayleigh–Ritz method,” Compos. Struct., vol. 133, pp. 1101–1115, 2015. https://doi.org/10.1016/j.compstruct.2015.08.015.Suche in Google Scholar

[17] Ö. Civalek, “Discrete singular convolution method for the free vibration analysis of rotating shells with different material properties,” Compos. Struct., vol. 160, pp. 267–279, 2017. https://doi.org/10.1016/j.compstruct.2016.10.031.Suche in Google Scholar

[18] X. Li, Y. H. Li, and T. F. Xie, “Vibration characteristics of a rotating composite laminated cylindrical shell in subsonic air flow and hygrothermal environment,” Int. J. Mech. Sci., vol. 150, pp. 356–368, 2019. https://doi.org/10.1016/j.ijmecsci.2018.10.024.Suche in Google Scholar

[19] Y. Q. Wang, “Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration,” Nonlinear Dynam., vol. 77, pp. 1693–1707, 2014. https://doi.org/10.1007/s11071-014-1410-5.Suche in Google Scholar

[20] T. Liu, W. Zhang, J. J. Mao, and Y. Zheng, “Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations,” Mech. Syst. Signal Process., vol. 127, pp. 463–498, 2019. https://doi.org/10.1016/j.ymssp.2019.02.061.Suche in Google Scholar

[21] G. G. Sheng and X. Wang, “The non-linear vibrations of rotating functionally graded cylindrical shells,” Nonlinear Dynam., vol. 87, pp. 1–15, 2017. https://doi.org/10.1007/s11071-016-3100-y.Suche in Google Scholar

[22] Y. H. Dong, B. Zhu, Y. Wang, Y. H. Li, and J. Yang, “Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load,” J. Sound Vib., vol. 437, pp. 79–96, 2018. https://doi.org/10.1016/j.jsv.2018.08.036.Suche in Google Scholar

[23] S. P. Sun, L. Liu, and D. Q. Cao, “Nonlinear travelling wave vibrations of a rotating thin cylindrical shell,” J. Sound Vib., vol. 431, pp. 122–136, 2018. https://doi.org/10.1016/j.jsv.2018.05.042.Suche in Google Scholar

[24] C. C. Du and Y. H. Li, “Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments,” Compos. Struct., vol. 102, pp. 164–174, 2013. https://doi.org/10.1016/j.compstruct.2013.02.028.Suche in Google Scholar

[25] M. Biswal, S. Sahu, and A. Asha, “Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results,” Compos. B Eng., vol. 98, pp. 108–119, 2016. https://doi.org/10.1016/j.compositesb.2016.05.037.Suche in Google Scholar

[26] T. Ye, G. Jin, and S. Gao, “Three-dimensional hygrothermal vibration of multilayered cylindrical shells,” Compos. Struct., vol. 201, pp. 867–881, 2018. https://doi.org/10.1016/j.compstruct.2018.06.055.Suche in Google Scholar

[27] T. R. Mahapatra, S. K. Panda, and V. R. Kar, “Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model,” Mech. Adv. Mater. Struct., vol. 23, pp. 1343–1359, 2016. https://doi.org/10.1080/15376494.2015.1085606.Suche in Google Scholar

[28] K. Foroutan, A. Shaterzadeh, and H. Ahmadi, “Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells,” Appl. Math. Model., vol. 77, pp. 539–553, 2020. https://doi.org/10.1016/j.apm.2019.07.062.Suche in Google Scholar

[29] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, New York, Cambridge University Press, 2013.Suche in Google Scholar

[30] R. M. Jones, Mechanics of Composite Materials, Washington, DC, Scripta Book Company, 1975.Suche in Google Scholar

[31] K. M. Liew, T. Y. Ng, X. Zhao, and J. N. Reddy, “Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells,” Comput. Methods Appl. Mech. Eng., vol. 191, pp. 4141–4157, 2002. https://doi.org/10.1016/s0045-7825(02)00358-4.Suche in Google Scholar

[32] S. Huang and B. Hsu, “Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load,” J. Sound Vib., vol. 136, pp. 215–228, 1990. https://doi.org/10.1016/0022-460x(90)90852-q.Suche in Google Scholar

[33] Q. K. Han and F. L. Chu, “Parametric resonance of truncated conical shells rotating at periodically varying angular speed,” J. Sound Vib., vol. 333, pp. 2866–2884, 2014. https://doi.org/10.1016/j.jsv.2014.02.020.Suche in Google Scholar

[34] W. Soedel, Vibrations of Shells and Plates, New York, M. Dekker, 1981.Suche in Google Scholar

[35] A. H. Nayfeh, Perturbation Methods, New York, Wiley, 1973.Suche in Google Scholar

[36] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Hoboken, John Wiley & Sons, 2008.Suche in Google Scholar

[37] A. Srinivasan and G. F. Lauterbach, “Traveling waves in rotating cylindrical shells,” J. Eng. Ind., vol. 93, pp. 1229–1232, 1971. https://doi.org/10.1115/1.3428067.Suche in Google Scholar

[38] W. Hahn, Stability of Motion, Berlin, Springer, 1967.10.1007/978-3-642-50085-5Suche in Google Scholar

[39] B. Patel, M. Ganapathi and D. Makhecha, “Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory,” Compos. Struct., vol. 56, pp. 25–34, 2002. https://doi.org/10.1016/s0263-8223(01)00182-9.Suche in Google Scholar

[40] Y. Q. Liu and F. L. Chu, “Nonlinear vibrations of rotating thin circular cylindrical shell,” Nonlinear Dynam., vol. 67, pp. 1467–1479, 2011. https://doi.org/10.1007/s11071-011-0082-7.Suche in Google Scholar

Received: 2021-02-06
Accepted: 2021-06-07
Published Online: 2021-06-30
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0029/html
Button zum nach oben scrollen