Abstract
Propagation of dust ion-acoustic (DIA) Gardner wave in a dusty electron–positron–ion (e–p–i) plasma is investigated. This plasma consists of q-distributed electrons and positrons, warm ions, and dust grains. The effects of the electron nonextensivity, positron nonextensivity, and fractional parameter on the properties of DIA Gardner wave are investigated. Space fractional Gardner (SFG) equation is derived using the semi inverse technique. An efficient modified G′/G-expansion method is presented to solve the SFG equation. It is found that the amplitude of the DIA Gardner wave increases with an increase in space fractional parameter
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Appendix A: Derivation of SFG equation
To formulate the space fractional Gardner (SFG) equation, introducing a potential function,
The functional of Eq. (A1) is given by:
where t 1, t 2, t 3, and t 4 are constants.
Integrating Eq. (A2) by parts using
By taking the first variation of Eq. (A3) gives:
Therefore, the Lagrangian of Gardner equation is presented as:
Similarity, Lagrangian of the fractional Gardner equation is written as:
In Eq. (A5),
Thus, the functional of SFG equation is given by:
Taking the first variations of Eq. (A6), according to the semi inverse and Agrawal techniques [49–51], respect to U,
Substituting Eq. (A5) into Eq. (A7) and applying
Equation (A8) is called SFG equation that describes the DIA waves.
Appendix B: An efficient modified G′/G-expansion method
A nonlinear space fractional PDE has the following form:
where Q is a polynomial.(U, U
tt
, … ) and
The mentioned method has the main steps as follow:
Step 1: A fractional complex transform [52, 53] is proposed to derive an integer order ODEs:
Substituting Eq. (B2) into Eq. (B1) gives an ordinary differential equation as follows:
Step 2: In modified G′/G-expansion method, the solution of Eq. (B3) can be written as:
where c j , j = 0, 1, 2, … , n are constants. While, G(ρ) satisfies the following ODE
where d 1, d 2 are constants.
Step 3: By balancing the highest order derivatives with the nonlinear term in Eq. (B3), n is obtained. Then, using the general solution of Eq. (B5), substituting Eq. (B4) into Eq. (B3), collecting all coefficients
References
[1] D. C. Clayton, “Maxwellian relative energies and solar neutrinos,” Nature, vol. 249, p. 131, 1974. https://doi.org/10.1038/249131a0.Suche in Google Scholar
[2] J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston, and R. P. Drake, “Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions,” Phys. Rev. Lett., vol. 72, p. 2717, 1994. https://doi.org/10.1103/physrevlett.72.2717.Suche in Google Scholar
[3] B. J. Hiley and G. S. Joice, “The Ising model with long-range interactions,” Proc. Phys. Soc., vol. 85, p. 493, 1965. https://doi.org/10.1088/0370-1328/85/3/310.Suche in Google Scholar
[4] G. Kotliar, P. W. Anderson, and D. L. Stein, “One-dimensional spin-glass model with long-range random interactions,” Phys. Rev. B, vol. 27, p. 602, 1983. https://doi.org/10.1103/physrevb.27.602.Suche in Google Scholar
[5] N. A. Bahcall and S. P. Oh, “The peculiar velocity function of galaxy clusters,” Astrophys. J., vol. 462, p. L49, 1996. https://doi.org/10.1086/310041.Suche in Google Scholar
[6] M. Bacha, M. Tribeche, and P. K. Shukla, “Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons,” Phys. Rev. E, vol. 85, p. 056413, 2012. https://doi.org/10.1103/physreve.85.056413.Suche in Google Scholar PubMed
[7] M. Amina, S. A. Ema, and A. A. Mamun, “Nonplanar electrostatic shock waves in an opposite polarity dust plasma with nonextensive electrons and ions,” Pramana - J. Phys., vol. 88, p. 81, 2017. https://doi.org/10.1007/s12043-017-1409-9.Suche in Google Scholar
[8] S. Yasmin, M. Asaduzzaman, and A. A. Mamun, “Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma,” Phys. Plasmas, vol. 19, p. 103703, 2012. https://doi.org/10.1063/1.4754529.Suche in Google Scholar
[9] A. Nazari-Golshan, “Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation,” Phys. Plasmas, vol. 23, p. 082109, 2016. https://doi.org/10.1063/1.4960668.Suche in Google Scholar
[10] M. Bacha and M. Tribeche, “Nonlinear dust-ion acoustic waves in a dusty plasma with non-extensive electrons and ions,” J. Plasma Phys., vol. 79, pp. 569–576, 2013. https://doi.org/10.1017/s0022377812000979.Suche in Google Scholar
[11] A. Saha and P. Chatterjee, “Solitonic, periodic, quasiperiodic and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas,” Eur. Phys. J. D, vol. 69, p. 203, 2015. https://doi.org/10.1140/epjd/e2015-60115-7.Suche in Google Scholar
[12] M. S. Alam, M. G. Hafez, and M. H. Ali, “Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes,” Phys. Plasmas, vol. 24, p. 072901, 2017. https://doi.org/10.1063/1.4990065.Suche in Google Scholar
[13] Z. Z. Li, J. F. Han, D. N. Gao, and W. S. Duan, “Small amplitude double layers in an electronegative dusty plasma with q -distributed electrons,” Chin. Phys. B, vol. 27, p. 105204, 2018. https://doi.org/10.1088/1674-1056/27/10/105204.Suche in Google Scholar
[14] W. F. El-Taibany, N. A. Zedan, and R. M. Taha, “Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons,” Astrophys. Space Sci., vol. 363, p. 129, 2018. https://doi.org/10.1007/s10509-018-3348-4.Suche in Google Scholar
[15] H. R. Miller and P. J. Witta, Active Galactic Nuclei, Berlin, Springer-Verlag, 1987.Suche in Google Scholar
[16] M. L. Burns, Positron-Electron Pairs in Astrophysics, Melville, NY, American Institute of Physics, 1983.Suche in Google Scholar
[17] F. C. Michel, Theory of Neutron Star Magnetosphere, Chicago, Chicago University Press, 1991.Suche in Google Scholar
[18] S. Weinberg, Gravitation and Cosmology, New York, Wiley, 1972.Suche in Google Scholar
[19] M. G. Hafez, M. R. Talukder, and M. Hossain Ali, “Nonlinear propagation of weakly relativistic ion-acoustic waves in electron-positron-ion plasma,” Pramana - J. Phys., vol. 87, p. 70, 2016. https://doi.org/10.1007/s12043-016-1275-x.Suche in Google Scholar
[20] A. Mugemana, I. J. Lazarus, and S. Moolla, “Linear electrostatic waves in a three-component electron-positron-ion plasma,” Phys. Plasmas, vol. 21, p. 122119, 2014. https://doi.org/10.1063/1.4905067.Suche in Google Scholar
[21] A. Mushtaq, “Ion acoustic solitary waves in magneto-rotating plasmas,” J. Phys. A: Math. Theor., vol. 43, p. 315501, 2010. https://doi.org/10.1088/1751-8113/43/31/315501.Suche in Google Scholar
[22] A. Rafat, M. M. Rahman, M. S. Alam, and A. A. Mamun, “Cylindrical and spherical electron-acoustic shock waves in electron-positron-ion plasmas with nonextensive electrons and positrons,” Commun. Theor. Phys., vol. 63, pp. 243–248, 2015. https://doi.org/10.1088/0253-6102/63/2/18.Suche in Google Scholar
[23] M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, “Ion-acoustic shock waves in nonextensive electron-positron-ion plasma,” Chin. Phys. Lett., vol. 32, p. 015201, 2015. https://doi.org/10.1088/0256-307x/32/1/015201.Suche in Google Scholar
[24] T. K. Maji, M. K. Ghorui, A. Saha, and P. Chatterjee, “Oblique interaction of ion-acoustic solitary waves in e-p-i plasmas,” Braz. J. Phys., vol. 47, no. 3, pp. 295–301, 2017. https://doi.org/10.1007/s13538-017-0496-x.Suche in Google Scholar
[25] A. Saha, N. Pal, and P. Chatterjee, “Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons,” Phys. Plasmas, vol. 21, p. 102101, 2014. https://doi.org/10.1063/1.4896715.Suche in Google Scholar
[26] C. T. D. Tchaho, H. M. Omanda, and D. B. Belobo, “Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation,” Eur. Phys. J. Plus, vol. 133, p. 387, 2018. https://doi.org/10.1140/epjp/i2018-12218-4.Suche in Google Scholar
[27] S. S. Nourazar, A. Nazari-Golshan, and F. Soleymanpour, “On the expedient solution of the magneto-hydrodynamic Jeffery-Hamel flow of Casson fluid,” Sci. Rep., vol. 8, p. 16358, 2018. https://doi.org/10.1038/s41598-018-34778-w.Suche in Google Scholar PubMed PubMed Central
[28] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Boston, Kluwer, 1994.10.1007/978-94-015-8289-6Suche in Google Scholar
[29] S. S. Nourazar, A. Nazari-Golshan, A. Yildirim, and M. Nourazar, “On the hybrid of Fourier transform and Adomian decomposition method for the solution of nonlinear Cauchy problems of the reaction-diffusion equation,” Z. Naturforsch. A, vol. 67, p. 355, 2012. https://doi.org/10.5560/zna.2012-0025.Suche in Google Scholar
[30] A. Nazari-Golshan and S. S. Nourazar, “Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation,” Phys. Plasmas, vol. 20, p. 103701, 2013. https://doi.org/10.1063/1.4823997.Suche in Google Scholar
[31] A. Nazari-Golshan, S. S. Nourazar, H. Ghafoori-Fard, A. Yildirim, and A. Campo, “A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane-Emden equations,” Appl. Math. Lett., vol. 26, p. 1018, 2013. https://doi.org/10.1016/j.aml.2013.05.010.Suche in Google Scholar
[32] S. S. Nourazar and A. Nazari-Golshan, “A new modification to homotopy perturbation method combined with Fourier transform for solving nonlinear Cauchy reaction diffusion equation,” Indian J. Phys., vol. 89, p. 61, 2015. https://doi.org/10.1007/s12648-014-0511-9.Suche in Google Scholar
[33] A. Nazari-Golshan, “Investigation of cylindrical shock waves in dusty plasma,” Indian J. Phys., vol. 92, pp. 1643–1650, 2018. https://doi.org/10.1007/s12648-018-1260-y.Suche in Google Scholar
[34] Z. Zhang, “Veranstaltungskalender,” Turk. J. Phys., vol. 32, p. 235, 2008. https://doi.org/10.1007/s11623-008-0039-2.Suche in Google Scholar
[35] Z. Zhang, Y. Li, Z. Liu, and X. Miao, “New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity via modified trigonometric function series method,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 8, p. 3097, 2011. https://doi.org/10.1016/j.cnsns.2010.12.010.Suche in Google Scholar
[36] Z. Zhang, Z. Liu, X. Miao, and Y. Chen, “Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Phys. Lett., vol. 375, p. 1275, 2011. https://doi.org/10.1016/j.physleta.2010.11.070.Suche in Google Scholar
[37] Z. Zhang, X. Gan, and D. Yu, “Bifurcation behaviour of the travelling wave solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity,” Z. Naturforsch. A, vol. 66, p. 721, 2011. https://doi.org/10.5560/zna.2011-0065.Suche in Google Scholar
[38] Z. Zhang, F. Xia, and X. Li, “Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations,” Pramana, vol. 80, no. 1, p. 41, 2013. https://doi.org/10.1007/s12043-012-0357-7.Suche in Google Scholar
[39] X. Miao and Z. Zhang, “The modified -expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 11, p. 4259, 2011. https://doi.org/10.1016/j.cnsns.2011.03.032.Suche in Google Scholar
[40] Z. Zhang, J. Huang, J. Zhong, et al.., “The extended (G′/G)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Pramana, vol. 82, no. 6, p. 1011, 2014. https://doi.org/10.1007/s12043-014-0747-0.Suche in Google Scholar
[41] Z. Zhang and J. Wu, “The I–V zero-drift mechanism of quantum effect photodetector,” Opt. Quant. Electron., vol. 49, p. 1, 2017. https://doi.org/10.1007/s11082-016-0869-3.Suche in Google Scholar
[42] Z. Zhang, J. Huang, J. Zhong, et al.., “Charge‐transfer complex coupled between polymer and H‐aggregate molecular crystals,” Rom. Journ. Phys., vol. 58, no. 7, p. 749, 2013. https://doi.org/10.1002/polb.23272.Suche in Google Scholar
[43] Z. Zhang, “Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations,” Rom. Journ. Phys., vol. 60, p. 1384, 2015.Suche in Google Scholar
[44] Z. Zhang, X. Gan, D. Yu, Y. Zhang, and X. Li, “A note on exact traveling wave solutions of the perturbed nonlinear schrödinger’s equation with Kerr law nonlinearity,” Commun. Theor. Phys., vol. 57, p. 764, 2012. https://doi.org/10.1088/0253-6102/57/5/05.Suche in Google Scholar
[45] Z. Zhang, “Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1+1)-dimension, part I-without local inductance and dissipation effect,” Turk. J. Phys., vol. 37, p. 259, 2013.10.3906/fiz-1205-13Suche in Google Scholar
[46] Z. Zhang, Y. Zhang, X. Gan, and D. Yu, “A note on exact travelling wave solutions for the Klein-Gordon- Zakharov equations,” Z. Naturforsch. A, vol. 67, p. 167, 2012. https://doi.org/10.5560/zna.2012-0007.Suche in Google Scholar
[47] Z. Zhang, Z. Liu, X. Miao, and Y. Chen, “New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Appl. Math. Comput., vol. 216, p. 3064, 2010. https://doi.org/10.1016/j.amc.2010.04.026.Suche in Google Scholar
[48] Z. Zhang, J. Huang, J. Zhong, et al.., “First integral method and exact solutions to nonlinear partial differential equations arising in mathematical physics,” Rom. Journ. Phys., vol. 65, no. 4, p. 1155, 2013.10.1186/1687-2770-2013-117Suche in Google Scholar
[49] J. H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics,” Int. J. Turbo Jet Engines, vol. 14, pp. 23–28, 1997. https://doi.org/10.1515/TJJ.1997.14.1.23.Suche in Google Scholar
[50] O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” J. Math. Anal. Appl., vol. 272, p. 368, 2002. https://doi.org/10.1016/s0022-247x(02)00180-4.Suche in Google Scholar
[51] O. P. Agrawal, “A general formulation and solution scheme for fractional optimal control problems,” Nonlinear Dynam., vol. 38, p. 323, 2004. https://doi.org/10.1007/s11071-004-3764-6.Suche in Google Scholar
[52] A. Nazari-Golshan, “Derivation and solution of space fractional modified Korteweg de Vries equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 79, p. 104904, 2019. https://doi.org/10.1016/j.cnsns.2019.104904.Suche in Google Scholar
[53] A. Nazari-Golshan, “Fractional generalized Kuramoto-Sivashinsky equation: formulation and solution,” Eur. Phys. J. Plus, vol. 134, p. 565, 2019. https://doi.org/10.1140/epjp/i2019-12948-7.Suche in Google Scholar
[54] L. A. Gougam and M. Tribeche, “Weak ion-acoustic double layers in a plasma with a q-nonextensive electron velocity distribution,” Astrophys. Space Sci., vol. 331, p. 181, 2011. https://doi.org/10.1007/s10509-010-0447-2.Suche in Google Scholar
[55] H. Schamel, “A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons,” J. Plasma Phys., vol. 9, p. 377, 1973. https://doi.org/10.1017/s002237780000756x.Suche in Google Scholar
[56] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, NewYork, Gordon & Breach, 1998.Suche in Google Scholar
[57] I. Podlubny, Fractional Differential Equations, New York, Academic Press, 1999.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine